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Abstract

Generating human-comprehensible explanations is an impor-
tant requirement for autonomous systems in human-agent
teaming environments. Humans and agents often have their
own knowledge of the world, knowledge of objectives being
pursued and tasks being performed, and their own constraints.
Given these differences, an agent may be issued goals that vi-
olate its own constraints or preferences, or are undesirable for
the team’s task. Numerous situations may arise where rebel-
lion by dropping or changing goals leads to a more beneficial
outcome. Agents with goal reasoning capabilities may rebel
by rejecting or altering the goals and plans expected of them
by human teammates. Explanations help build trust and un-
derstanding between the human and agent, leading to greater
overall effectiveness. In this paper we outline motivating ex-
amples for explainable rebellious behavior in goal reasoning
systems and identify open research questions.

Introduction

In recent years there has been increased interest in au-
tonomous agents capable of rebellion (Briggs and Scheutz
2016). Rebellious agents are agents that may reject, revise,
or in some form protest a goal issued to them by another
agent (including humans). This ability to rebel is neces-
sary for any agent that receives goals from multiple sources
(including self-provided goals) that may conflict. Consider
service robots that give tours or deliver goods (e.g., a hotel
room service robot); these agents should reject goals that
could lead to any number of undesirable situations, such
as those that damage the robot. Many positive reasons
for rebellion have been described (Aha and Coman 2017,
Briggs and Scheutz 2015), including:

o Differential Information Access: The agent may have
access to information the human does not have. A sim-
ple example is when an agent is helping a human to move
a box in a warehouse and, while carrying the object, the
agent observes a harmful obstacle behind the human. The
agent stops moving and informs the human, rebelling
against the given goal of moving the box to the target des-
tination.
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e Oversubscription: The agent is tasked with goals from
two teammates, and thus may reject goals from one of
them. For example, an agent on a team is tasked by a su-
pervisor with obtaining information (by mapping an envi-
ronment and taking pictures and video) while other team
members are responsible for moving obstacles to clear a
path. When another agent asks the surveillance agent to
help move an obstacle, the agent may reject that goal since
it does not align with its current surveillance goal.

¢ Ethical Conflict: The agent has a conflict with the ethics
of a given goal. For example, an agent may be asked to
take a harmful action against another human, violating the
agent’s ethical code of not harming any humans. This may
involve hard constraints, such as not taking any action that
could have a harmful effect (Briggs and Scheutz 2015), or
a preference for avoiding states with low ethical scores.

e Impasse: A provided goal may not be achievable due to
resources (e.g., battery level) or obstacles.

e Task Violation: A provided goal may violate some global
constraints or preferences of the agent, such as delivering
a package to a destination outside the country or safe area.
These constraints may be similar to ethics, but may be
more task-specific.

e Safety: An autonomous vehicle may be given a goal to
reach a destination in a short period of time. However, the
plan to reach the destination could become dangerous. An
autonomous car may need to violate traffic laws or drive
off-road, or a drone may need to travel too fast to avoid
obstacles (i.e., if flying in a forest or indoor environments
such as in urban search and rescue settings).

While there are many motivations for positive rebellion,
it makes a rebel agent less predictable to other interact-
ing agents. Thus, any agent that can rebel should also be
able to explain its behavior. Indeed, legal measures are be-
ing adopted to provide individuals affected by automated
decision-making with a “right to explanation”, as referred
to in the recent EU General Data Protection Regulation
(GDPR), in place from May 2018 (European Parliament and
Council 2016).

The interpretability of Al systems has been a popular
topic of workshops and related events since 2016, and in
2017 DARPA launched the Explainable Al (XAI) Program.



Most of these efforts have focused on providing trans-
parency to the decision making of machine learning (ML)
systems in general, and deep networks more specifically’.
While XAI research on data-driven ML is well-motivated,
Al Planning is well placed to address the challenges of trans-
parency and explainability in a broad range of interactive Al
systems. For example, research on Explainable Planning has
focused on helping humans to understand a plan produced
by the planner (e.g., (Sohrabi, Baier, and Mcllraith 2011;
Bidot et al. 2010)), on reconciling the models of agents and
humans (e.g., (Chakraborti et al. 2017)), and on explain-
ing why a particular action was chosen by a planner rather
than a different one (e.g., (Smith 2012; Langley et al. 2017;
Fox, Long, and Magazzeni 2017).

Most prior work on rebel agents considers how robots can
avoid hard ethical constraints, such as actions that may harm
self or others (Briggs and Scheutz 2015), or that violate a
constraint in a task specification when working alongside
a human (Gregg-Smith and Mayol-Cuevas 2015). These
agents have rebelled against actions that have harmful ef-
fects. Instead, we are concerned with agents equipped with
automated planners that may execute complex sequences of
actions to achieve goals.

Since rebellious goal reasoning agents are concerned with
decisions regarding which goals to pursue in addition to
planning decisions, explanations will also need to consider
goal reasoning decisions. Explaining such planning and goal
related decisions is the focus of this paper. More specifi-
cally, we motivate why the intersection of rebel agents and
explainable planning is an important research area, outline
future problems for explainable rebellious planning and goal
reasoning agents, and discuss several research questions that
require attention.

Related Work

Briggs et al. (2015) present an approach to determine the
speech directives a robot should utter when rebelling. They
describe five felicity conditions that must be met before a
robotic agent adopts a goal issued by a human. These con-
ditions may not be sufficient for automated planning agents
to accept or reject goals. For example, metrics are not con-
sidered, so there is no ability for an agent to reject a goal
because it would be much more expensive/risky/unsafe than
what the human may have assumed when issuing the goal.
To our knowledge, no prior work describes automated
planning agents that can reject goals and explain their de-
cision for rebellion. Research on goal reasoning (Vattam et
al. 2013) considers agents that can perform operations on
their goals, such as changing or dropping a goal via vari-
ous operations (Cox, Dannenhauer, and Kondrakunta 2017;
Cox 2016) and, in the formalism of the Goal Lifecycle, by
applying goal refinement strategies (Roberts et al. 2016).
However, in prior work these goal changes occur due to en-
countering unexpected external events or opportunistic sit-
uations, rather than rebelling against a provided goal. Cox
and Veloso (1998) describe goal transformations that occur

lExceptions, for example, include the broader intent of the
Workshops on XAI at IJCAI-17 and IJCAI-18
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Figure 1: Top-down environment view for an autonomous
delivery drone. The environment contains the drone (Row 7,
Column 0), a package (Row 5, Column 0), a dropoff location
(Row 1, Column 8), and a body of water (rectangular region
between Row 2, Column 2 and Row 4, Column 5).

during plan generation in PRODIGY, where one of the trans-
formations is the dropping of a goal. Although rebellious
goal changes could be encoded in such an architecture (e.g.,
rebellion by dropping a goal could be considered a retrac-
tion operation as described in Table 1 in (Cox and Veloso
1998)), rebellious goal changes have not been considered or
implemented.

Real-world planning systems operate on large amounts of
data and can generate plans that overwhelm a human oper-
ator, especially when they are subject to severe time con-
straints for decision making (e.g., whether to abort a mis-
sion). Thus, methods for explaining decisions (e.g., by com-
paring multiple plans) must generate explanations that can
be quickly digested.

Motivating Example

We now provide a motivating example of a rebel agent op-
erating in a dynamic and uncertain environment. Figure 1
displays a top-down view of a state in an environment in
which an autonomous delivery drone operates (Row 7, Col-
umn 0). In this example, the agent controls the drone and
we use the two terms interchangeably. This state contains
a package (Row 5, Column 0), a dropoff location (Row 1,
Column 8), and a large body of water (a rectangular region
between Row 2, Column 2 and Row 4, Column 5). The
drone’s human operator provides it with goals and can com-
municate with it, but the operator is not physically located
in the area depicted in Figure 1. For this example, we as-
sume that the initial goal utterance provided by the operator
is “deliver the package to the dropoff location and return to
your initial position”.

In the simplest scenario, the drone would take the pro-
vided goal and generate the following plan (Figure 2): fly to
the package, pick up the package, fly directly to the dropoff
location, drop off the package, and fly directly to the initial
location. In this version, there would be little need for ex-
planation since the drone would achieve the specified goal
using an expected plan (i.e., flying directly between all loca-
tions). Additionally, since no unexpected events or environ-
ment changes occur, the drone would have no new informa-
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Figure 2: Visualization of drone’s plan to fly directly to the
package, pick up the package, fly directly to the dropoff,
drop off the package, and fly directly to its initial position.

tion to provide its operator.

Consider a variant of this scenario where the drone con-
siders flying over water to be dangerous but the operator is
not aware of this water-avoidance preference. The plan gen-
erated by the drone will still deliver the package, but will
take a slightly longer route that avoids the water (Figure 3).
If no pre-execution communication occurred (e.g., making
the operator aware of the preference or getting feedback on
the generated plan), the drone would execute the plan with-
out knowing that it was rebelling against the operator’s de-
sire for a plan that uses only direct flight routes.

Either during plan execution, if communication is possi-
ble, or during a post-mission debriefing, the operator may
ask questions to improve their understanding of why the
drone’s plan differed from their expectations:

e Operator: “Were you pursuing another goal?”
Agent: “No, only the goal you provided me”

e Operator: “Was that the most efficient plan to achieve
the goal?”

Agent: “Yes, it was the most direct route I could take to
deliver the package given my preferences”

e Operator: “Why didn’t you just fly over the water’
Agent: “Because flying over the water is too dangerous”

Based on these questions and the provided explanations,
the drone can convey that its act of rebellion was due to a
divergent set of planning preferences, thereby leading to dif-
ferences in the drone’s generated plan and the plan that the
operator expected to see executed.

Consider a third variant where the operator is aware that
the drone prefers to avoid flying over water. In this variant,
the operator would expect the drone to fly around the water
but, because they are not physically located in the environ-
ment, would be unaware of any environment changes that
occur. As shown in Figure 4, when the drone reaches the
water’s edge it notices a large fire blocking its path to the
dropoff location. This would cause the drone to replan to fly
clockwise around the water. However, after delivering the
package to the dropoff location, the drone realizes its fuel is
lower than expected and its planner finds that the only feasi-
ble plan, due to the limited fuel, is to fly over the water.
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Figure 3: Variant of the drone’s delivery plan that avoids
flying over the water.
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Figure 4: Variant of the drone’s delivery plan that requires
replanning when the drone detects the fire (rectangular re-
gion between Row 3, Column 6 and Row 5, Column 9) and
when the drone detects it is low on fuel.

To the operator, who is unaware of the fire, it may ap-
pear that the drone rebelled (against the expected plan or
provided goal) or opportunistically modified its goals. For
example, to an outside observer it would be reasonable to
assume that the drone retrieved another package at the loca-
tion where it detected the fire and delivered that package to
a location near the top of the water body. As in the previous
scenario, and most situations involving a rebel agent capable
of goal reasoning, the operator may wish to query the agent
about its goals and plans. For example, these questions, and
possible associated explanations from the agent, include:

e Operator: “Why did you stop flying towards the dropoff
location and fly clockwise around the water?”
Agent: “Because there was a large fire blocking my path”
e Operator: “Why did you return by flying over the wa-
ter?”

Agent: “Because I was low on fuel and my desire to re-
turn home outweighed my preference to avoid flying over
water”

e Operator: “Why didn’t you take a shorter path over the
water by flying directly north after detecting the fire?
Agent: “Because my original plan was to avoid the water,
but I used more fuel than expected and needed to replan”

As a final scenario, consider when the drone executes its
initial plan but an unexpected opportunity presents itself.
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Figure 5: Variant of the drone’s plan when it encounters a car
crash (Row 3, Column 6) and generates a goal to assist the
victims by airlifting them to the hospital (Row 6, Column
9).

Figure 5 shows that the drone, while attempting to deliver
the package, observes a serious car accident. The drone may
have a strong internal motivation to help preserve life when-
ever possible, so it would rebel against its delivery goal,
abandoning or suspending it, and instead formulate a new
goal to assist the crash victims. The drone would generate
a plan to achieve its new goal, and perform actions to airlift
the car’s driver to a nearby hospital®>. Its new plan would
involve airlifting the car’s driver to a nearby hospital. Af-
ter completing that plan and achieving the goal, the extra
fuel drain from carrying a human would make the delivery
goal impossible, so the drone would return to its initial posi-
tion. The operator may have the following questions for the
drone:

e Operator: “Were you pursuing another goal?”
Agent: “Yes, I formulated a new goal to assist a car crash
victim”

e Operator: “Why did you help the victim instead of com-
pleting the delivery?”

Agent: “I am programmed to prevent the loss of human
life and the injuries looked serious.”

e Operator: “Why didn’t you complete the delivery after-
wards?’

Agent: “Because the weight of the victim drained my fuel
faster than normal; I was unable to generate a plan to
complete the delivery given my fuel level”

As this motivating example demonstrates, when an agent
operates in a sufficiently complex environment where it in-
teracts with a teammate, many opportunities/needs for ex-
planation arise. These increase when the agent and its team-
mate may have different (or unknown) planning preferences
(e.g., water-avoidance), methods to evaluate plan quality
(e.g., plan duration vs. plan safety), or observable informa-
tion (e.g., an agent located in the environment vs. an opera-
tor externally located). Additionally, the knowledge that an

2This example assumes that a drone exists that could perform
such an airlift maneuver. This may be unreasonable for current-
generation drones, but is used for illustrative purposes.

agent can rebel or modify its own goals may make an op-
erator more likely to assume goal changes or rebellion are
the cause of unexpected behavior. Thus, the agent needs to
answer such questions by explaining its plans and goals, as
well as any additional information related to the reason it
behaved unexpectedly.

We simplified the presentation and discussion of our ex-
amples by including assumptions, namely a lack of on-
line communication or time-sensitive tasks preventing rapid
communication, that restricted questions and explanations
to occur post-run. However, the need for explanation also
exists during the course of operation. For example, upon
seeing a real-time report of the drone’s GPS location, the
operator may ask questions about why the drone appears to
be deviating from expectations. Similarly, the drone could
realize that its changing behavior is unexpected and provide
proactive explanations that it believes will provide necessary
context to the operator. Although such real-time questions
and explanations could lead to unnecessary supervision of
the agent (e.g., questioning every minor variance from ex-
pectations, even if the differences have no impact on overall
success), they also provide the ability to incrementally cor-
rect misunderstandings and prevent the operator from be-
coming overwhelmed by how much the agent’s behavior
deviates from expectations. This is important in situations
where disuse is possible, since a human may just label a
robot as untrustworthy and stop using it rather than ask the
tens or hundreds of post-run questions necessary to under-
stand its behavior.

Explaining Goal Reasoning Decisions

The field of goal reasoning has seen at least three general
frameworks emerge: Goal-Driven Autonomy (GDA) (Mo-
lineaux, Klenk, and Aha 2010), the Goal Lifecycle (Roberts
et al. 2016), and Goal Operations and Transformations
(Cox, Dannenhauer, and Kondrakunta 2017; Cox and Veloso
1998). Explainable goal reasoning is an open problem which
we hope to motivate others in the community to pursue, and
has been identified as an important factor for goal reason-
ing agents that are members of human-robot teams (Molin-
eaux et al. 2018). Although there have been recent exam-
ples of goal reasoning agents being deployed as members of
human-agent teams in complex domains (Floyd et al. 2017;
Gillespie et al. 2015), these agents do not explicitly explain
their behavior to human teammates. We highlight the chal-
lenges and issues that may arise to create explainable goal
reasoning agents in each of these frameworks.

Explaining Goal-Driven Autonomy

e Explainable GDA agents will likely require not only a
general trace, but also explanations of components that af-
fect the pursuit of goals besides planning, including: mo-
tivator functions (Coddington et al. 2005; Muiioz-Avila,
Wilson, and Aha 2015), discrepancy detection (Dannen-
hauer, Munoz-Avila, and Cox 2016; Karneeb et al. 2018),
internal explanation (Molineaux, Kuter, and Klenk 2012),
and goal selection. A goal may be abandoned because dis-
crepancy detection (using informed expectations or goal



regression expectations) notices an anomaly. A logical
follow-up question is “what was the anomaly?” and
“why is the anomaly important?”. When it comes to ex-
plaining discrepancy detection and why an action failed,
and why that action is important (especially if using goal
regression expectations) we may want to use a depen-
dency graph (Ayan et al. 2007) to demonstrate that a cer-
tain part of our goal cannot be reached if this action is not
performed.

Since a human may ask why an agent formulated a new
goal ¢, the agent may need to backtrack to the internal
explanation component (e.g., that the explanation is that
there is an obstacle), and then backtrack to the anomaly
detection (e.g., that action 7 of the current plan failed),
and then backtrack to the planning system to say “I (the
agent) chose this plan instead of others because it was
more efficient”.

Explaining the Goal Lifecycle

e The Goal Lifecycle is built on Goal-Task Network (GTN)

Planning and an open question remains about how to gen-
erate explanations from GTNs. Another open question is
whether the questions asked about GTNs differ from those
considers by existing work of explainable planning (Fox,
Long, and Magazzeni 2017).

As goals are refined toward completion or backtracking
for later processing, a number of metrics (either domain-
dependent or domain-independent, like inertia) are main-
tained. An open question is how to use these metrics in
explanations? Another open question is whether the in-
formation maintained by the Goal Lifecycle during goal
refinement is enough to handle all the questions a user
would ask the system. If not, what other information
would be needed to answer these questions and how
would the formalism change to support this?

Explaining Goal Operations and Transformations

e Performing goal operations and transformations to re-

solve an unachievable goal to an achievable goal is an
open problem. Since goal operations are formulated sim-
ilarly to planning operations on world states, the trace of
goal operations could be stored. Only some goal oper-
ations have been formalized completely into operators,
and they make use of an ontology. Explanations of why
the agent chose to pursue goal ¢’ when the current goal
g is unachievable or undesirable may rely on explaining
relationships between goal predicates that are in the on-
tology. The example from (Cox, Dannenhauer, and Kon-
drakunta 2017), where the goal of on(B,A) is generated
when stable-on(B,A) is unachievable, has to do with the
fact that the on predicate is closely related to the stable-
on predicate in the goal predicate ontology.

Common Themes for Explainable GR Agents

e A trace of behavior will be needed to rewind decision

making in all three of these frameworks. The formal-
ism of the Goal Lifecycle contains some trace information
for explanations and the MIDCA cognitive architecture
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Figure 6: Multi-level overview of goal reasoning processes.

from (Cox, Dannenhauer, and Kondrakunta 2017) main-
tains a trace of the cognitive level decision making which
includes some goal reasoning decision making: goal se-
lection, goal-related discrepancy detection, and internal
explanation. However, some goal operations, such as goal
transformation (one method of goal formulation) could
occur at the metacognitive level, thus warranting expla-
nations of the meta-level processes. Therefore, a trace
of the metalevel could identify the meta-level reasoning
processes performed by the agent and provide metalevel
explanations.

Complex situations will call for human operators to desire
multi-level explanation mechanisms that at the top level
answer questions by first identifying which goal reasoning
mechanism(s) were involved and then exploring the de-
tails of those specific mechanisms. The space of explana-
tions for goal reasoning systems is likely much larger than
planning systems without goal reasoning components. A
preliminary multi-level overview of goal reasoning com-
ponents is presented in Figure 6.

The larger bubbles in Figure 6 represent more general ex-
planation requests, and smaller bubbles represent more
narrow requests. In attempting to learn why an agent
abandoned a goal, the operator may first ask a high-level
question of: “What caused you to abandon your goal?”.
The agent may give the high-level answer: “Because [
detected an unresolvable discrepancy”. To answer this
question, the agent may first start within the largest bub-
ble, Explainable Goal Reasoning, and answer with a re-
sponse tied to a bubble within that bubble: Explainable
Discrepancy Detection. When the operator asks a follow
up question “Why was the discrepancy unresolvable?”
the agent may first identify this question falls within the
Explainable Discrepancy Detection bubble and generate
an answer related to the inner bubble Explainable Depen-
dency Graphs: “I could not achieve my goal because I
could not execute a specific action that achieves a spe-
cific goal condition”. This example illustrates that expla-
nations may be relevant to different goal reasoning pro-
cesses. Before answering a question effectively, an agent



may need to identify which goal reasoning components
are relevant to the question.

Discussion

In the case where the agent rejects a goal, the agent needs
to show (to the extent that is possible) that it could not find
any way to achieve that goal without violating one of the
conditions. And this is where explainable planning, and in
particular the use of planning, comes into play. Given that,
in general, it is not feasible to formally prove that there are
no plans, the agent and the user can use the explainable plan-
ning framework (XAIP) (Fox, Long, and Magazzeni 2017)
to provide a justification/understanding of why the agent re-
belled.

The XAIP framework in this context can be used in two
ways:

1. The rebel agent uses the XAIP framework itself, by ques-
tioning the current plans (that is not valid) and exploring
alternative plans.

2. The agent and the human (or the other agent) use XAIP
in cooperation, where the human questions the initial plan
(trying to find feasible ways to achieve the goal).

In both scenarios, we envision XAIP being used both during
and after scenarios (i.e., online vs. post-run debriefing).

Open Questions for Explainable Rebel Agents

1. Explainable rebellion: How can rebel agents explain why
the rejected actions violated their ethical models (e.g., for
example rejecting actions that cause harm)? Also, how
can rebel agent explain why they chose one goal over an-
other when using a metric-based evaluation (e.g., this may
involve reporting that states needed to reach the goal or
goal states themselves have low ethical scores)?

2. While there has been some work on implementing goal
operations in various frameworks, an agent with all pos-
sible goal operations and goal strategies has not yet been
realized. Two open problems are: How can each goal
operation / strategy be explained? and in the case when
multiple goal reasoning operations / strategies have been
applied How can multiple explanations be composed in a
digestible way?

3. Will explainable goal reasoning agents in complex do-
mains with complex reasoning components run into po-
tential space problems? Might some questions warrant
explanations that are just too expensive to compute? For
example, suppose an agent has executed hundreds or
thousands of actions since the last time the operator in-
teracted with the agent to give it a goal. During that time,
the agent’s goal may have changed multiple times due to
anomalies (e.g, the goal was suspended, another goal cho-
sen, then later the original goal was re-adopted but the
old plan was invalid so agent did re-planning). Whenever
the agent changes goals or plans, how many alternative
plans should it store to provide evidence of its decisions?
Or should the agent save computational and storage time
by only computing information needed for explanations
when necessary (e.g., when a question is asked)? How

does the tradeoff between maintaining complete expla-
nation knowledge and lazy on-demand explanation gen-
eration impact the amount of time necessary to generate
explanations (i.e., precomputed explanations vs. dynam-
ically generated explanations)? Does the particular do-
main impact these choices (e.g., the agent’s available on-
board hardware resources, time-sensitive nature of expla-
nations, expected explanation needs of a particular user)?

Conclusion

An agent’s behavior may be the result of changes to both
the agent’s goals and plans. Thus, an agent that can mod-
ify its plans or goals, and also reject plans or goals from
teammates, requires increasingly sophisticated methods of
explanation. In this paper, we have discussed why expla-
nation is an important factor for rebellious goal reasoning
agents and why explainable planning is a key consideration
for such agents. In addition to a motivating example illus-
trating the potential explanations that may be required of
such an agent, we have also examined the explanation needs
of existing goal reasoning frameworks and many of the open
questions that remain. As goal reasoning agents are deploy-
ing in increasing complex domains as part of human-agent
teams, we hope this discussion will motivate the develop-
ment of explanation capabilities in goal reasoning agents.
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