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Abstract
Non-player characters (NPCs) in video games are a common
form of frustration for players because they generally provide
no explanations for their actions or provide simplistic expla-
nations using fixed scripts. Motivated by this, we consider a
new design for agents that can learn about their environments,
accomplish a range of goals, and explain what they are doing
to a supervisor. We propose a framework for studying this
type of agent, and compare it to existing reinforcement learn-
ing and self-motivated agent frameworks. We propose a novel
design for an initial agent that acts within this framework. Fi-
nally, we describe an evaluation centered around the supervi-
sor’s satisfaction and understanding of the agent’s behavior.

Introduction
Assistant non-player characters (NPCs) can be a major
source of frustration to video game players. Commonly,
players can give tasks or policy instructions to an NPC, who
use human-written behaviors to act within the rules of the
game world to assist the player and accomplish tasks. Frus-
tration stems primarily from the opacity of their reasoning
processes. They may be responding to internal needs the
player is unaware of, or encountering obstacles the player
cannot see, but they do not communicate these problems.
As a result, a player can assume incompetence and not take
advantage of the NPC’s skills. Furthermore, such NPCs are
reliant on pre-existing hand-coded behaviors; they can’t re-
spond to novel requests, nor adapt to changes in their en-
vironment. Scripted NPCs with fixed models of the world
can be reasonably used in games where the NPC can be
expected to take a constrained role in well-defined envi-
ronments, but as games increase in complexity to include
growing or changing worlds (e.g., user created content or
computer-generated levels) the need for an adaptive agent
increases. We focus on NPCs in the player-assistant role
and posit that an explainable agent who explores when not
tasked would be more useful and less frustrating.

For NPCs to explain themselves to human players, it’s im-
portant that they represent concepts important to the player:
objects and relationships in the game world, and goals and
plans that the user understands. These capabilities are com-
mon to many planning and execution agents; therefore, we
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seek to extend such agents to perform exploration-based
learning, and interact with a human supervisor. In addition to
acquiring knowledge about the state of the environment, we
are interested in allowing the agent to update a model of the
environment’s transitions based on self-directed exploration.
This will allow an agent to improve its understanding of how
the environment and other agents develop. To facilitate goal-
oriented behavior, we consider representations for this tran-
sition model drawn from automated planning research.

This paper is composed as follows: in Section 2, we de-
scribe a framework for explainable autonomous agents that
can be used to describe exploratory and goal-directed behav-
iors as well as interaction with a supervisor. In Section 3,
we describe how this framework relates to prior research in
reinforcement learning and self-motivated learning. Section
4 presents the design of an initial explainable exploratory
goal-driven agent. Section 5 discusses a notional study with
such an agent. Section 6 reviews plans for future work.

Framework for Explainable Autonomous
Agents

Existing frameworks such as the reinforcement learning
paradigm are inadequate to describe the information needs
of explainable autonomous agents. Instead, we present a new
framework (Figure 1), based on the idea that a supervisor,
rather than the environment, provides an agent with moti-
vation. As in other agent frameworks, the agent receives an
observation (ot) on each time step t that reflects informa-
tion about the true environment state (st, not depicted), and
interacts with the environment by taking an action (at). Un-
like in other frameworks, the agent also interacts with a su-
pervisor. The supervisor makes requests (rt) of the agent,
updated at each time step, that reflect what the supervisor
would like the agent to accomplish. In return, the agent is
expected to provide an explanation (xt) to the supervisor at
each time step describing why it takes a particular action.

Supervisors will observe the world and be more or less
satisfied with how the agent is doing; we represent this with
a satisfaction function, satisfaction: RN × SN → R, that
indicates how a supervisor’s past requests and the environ-
ment’s state impact how satisfied the supervisor becomes.
The satisfaction function can encode, for example, that the
supervisor’s satisfaction decreases based on the latency be-



Figure 1: Explainable Autonomous Agent Framework

tween their first request and the time step when the agent ac-
tually accomplishes a goal. Other complex constraints and
preferences can also be encoded.

We represent the environment as producing observations
deterministically based on states via an observation function
obs : S → O, and transitioning deterministically (in future
work we will explore non-deterministic transitions) between
states via the transition function λ : S ×A→ S.

This framework allows for explanations and requests to
take many different forms; the user could specify a request
as a goal state, a temporal expression, or as a set of prefer-
ences and constraints. In Section 4, we discuss some choices
we make about the design of a particular autonomous agent.

Related Work
Work on learning action models has a long history in the
area of reinforcement learning. The primary difference of
this work from RL is that our agent is goal-driven (notice in
Figure 1 that the environment only provides an observation
and not a reward). Yet since we also have an exploration vs
exploitation problem, we expect to draw on ideas from RL.

Carmel and Markovitch (1999) contrast reinforcement
learning with model-based learning in order to show how
RL strategies can be transferred. Their work focuses on ad-
versarial domains such as the Iterate Prisoners’ Dilemma.
They learn models of their opponents as finite automata us-
ing a utility. A primary contribution is a novel lookahead
based exploration strategy to attempt to avoid the dangers
implicit in exploration through a Bayesian prior, which helps
the system avoid low-utility absorbing paths in an opponent
model. In our work we do not focus exclusively on adver-
sarial domains given that we also model a state of the en-
vironment. Avoiding dangers is something we consider for
our exploratory planner; during exploration it should avoid
states that are undesirable even if the agent would gain a
novel update to its action model.

Georgeon, Morgan, and Ritter (2010) discuss an algo-
rithm for an “intrinsically motivated” agent, similar to a re-
inforcement learning agent, whose “rewards” (referred to as
“satisfaction”) are based on actions and their effects, but not
the world state. Work by Georgeon et al. differs from RL be-
cause the focus is on trying to learn hierarchies that achieve
a good reward rather than taking the best action at a partic-
ular state. The paper does not describe clearly whether there
is an existing transition model within the schemas. It is clear
that observations are different from RL observations, as they
assume a non-Markovian environment. The major difference
from this work is the lack of state information. Here we are
concerned with a supervisor that is able to give goals in the
form of future states for the agent to achieve, and that the
agent is able to learn a state transition function for its ac-

tions.
Hester and Stone (2017) discuss multiple exploration re-

ward schemes and reward metrics in intrinsically moti-
vated RL systems. Two exploration-based intrinsic reward
schemes are presented: a variance-based scheme and a
novelty-based scheme. The variance-based scheme rewards
an agent for taking an action a in a state s proportionally to
the disagreement among its learned team of experts about
the outcome distribution of the next state P (s, a); that is
to say, the agent becomes more likely to take an action if
it is uncertain of that action’s outcome. The novelty-based
scheme rewards an agent for taking an action a proportion-
ally to the distance between the current state s and the near-
est state s′ in which action a was previously taken. That is
to say, an action is preferred to the extent that it has not
yet been tried in a similar state. Their work focuses only on
the exploration period and do not consider the exploration-
exploitation tradeoff, which we explicitly account for in our
agent design (within the Controller shown in Figure 2). We
propose that our agent will often need to choose whether
to explore to learn its action model or to achieve a goal.
The novelty-based scheme is directly applicable to the ex-
ploration planner; the notion of novelty could serve as a
heuristic to find a state in which taking an action would yield
considerable new observations.

Baranes and Oudeyer (2009) discuss learning of forward
and inverse robot kinematic and dynamic models for robot
control. Exploration is governed in three ways: uniform ran-
dom, learning process maximization exploration, and er-
ror maximization learning. Learning process maximization
exploration selects a (continuous) action from the region
where the best learning progress is currently being made (re-
ferred to by Hester and Stone as “competence progress”).
Error maximization learning (which is based on learning
process maximization exploration) selects an action with the
maximum predicted error within the region where the best
learning progress is currently being made. No exploitation
is performed in that work; tradeoff between various explo-
ration methods is achieved with simple constant probabili-
ties.

Sequeira, Melo, and Paiva (2011) discuss emotions as
a structure for intrinsic motivations which are balanced
against extrinsic motivations. Numeric intrinisic motivations
are based on appraisal dimensions including novelty, moti-
vation, control, and valence. Novelty is proportional to the
number of times an action has been used in a given situation
before. Motivation has to do with relevance, and is inversely
proportional to the (estimated) distance to a “goal” state that
provides maximal reward. Control is simply the inverse of
novelty, as the agent has more control when it’s in a more
well understood situation. Valence seems to deal with how
well the agent’s basic needs are currently met.

Since we are interested in learning actions in a relational
structure, we describe related work for learning relational
action models in automated planning research. For example,
actions may have preconditions and effects. This would be
more closely related to model-based RL where an agent can
predict what state it will be in if it takes a specific action in
a specific state (as opposed to just knowing the reward value



for taking an action in a state, like in Q-learning). However,
most RL problems are formulated using a feature-vector of
the state while we are considering a more ontological struc-
ture of the state that has objects and predicates specifying
relations among the objects.

(Haussler 1989) shows that to find the maximally spe-
cific common generalization MSCG of preconditions (or ef-
fects) for an operator o given m examples over an instance
space defined by n attributes is NP-complete. Inductive ap-
proaches that use heuristics have been effective (Vere 1980;
Hayes-Roth and McDermott 1978; Watanabe and Rendell
1990) but may not apply to all learning problems. FOIL
(Quinlan 1990) is a greedy algorithm that, like the heuristic
approaches just mentioned, requires both positive and neg-
ative examples for training. (Wang 1995) developed a sys-
tem called OBSERVER that uses expert traces of actions
and a simulator for running practice problems. OBSERVER
does not need approximate action models, it learns action
models from scratch that are as effective as human-expert
coded action models assuming expert traces are available.
One requirement of OBSERVER is the ability to learn with
positive-only examples prior to execution. In our work we
are considering an online approach, where the agent will
generate negative samples whenever an action fails. Thus we
plan to use an approach similar to OBSERVER and FOIL for
deterministic, fully observable environments.

A survey on machine learning for automated planning
(Jiménez et al. 2012) noted that, for learning deterministic
models in fully observable environments, collecting a good
observation sample of planning actions remains an open
problem. (Walsh and Littman 2008) show that by bounding
the number of preconditions and effects for a given action,
the number of executions needed to guarantee learning the
action is reduced to polynomial complexity (polynomial in
the number of actions and predicates in the domain).

Besides only focusing on operator learning for planning
with complete action models, (Weber and Bryce 2011) gives
a planning algorithm that reasons about the domain model’s
incompleteness in order to avoid failure. Incorporating such
a technique into our agent for the goal-driven planner would
allow the agent to perform planning prior to the learning of
a complete action model (which may never happen).

Finally, learning models for actions alone may not be
enough in environments with exogenous events. (Molineaux
and Aha 2014) learn models of unknown exogenous events
in their FoolMeTwice system using DiscoverHistory. Dis-
coverHistory is an algorithm for discovering explanations
given a series of partial observations, and by generalizing
over these explanations using an adaptation of FOIL (Quin-
lan 1990), a model of the event can be formulated. Incor-
porating events into the planner produce better plans that
are able to account for the newly discovered events. Our ex-
ploratory planner will need to be able to direct behavior in
order to learn models of not only actions but also exogenous
events, should they be present in the environment.

Explainable Exploratory Goal-Driven Agent
Figure 2 shows the architecture of an initial explainable au-
tonomous agent capable of taking actions in order to explore

as well as to achieve goals. This agent assumes a relational
representation of states, observations, and actions are pro-
vided to it, as well as the environment’s observation func-
tion, but not the transition function. The agent attempts to
learn the transition function over time. The supervisor is as-
sumed to represent user requests via a set of goals, and ex-
planations via the agent’s current plan and the goal that plan
is intended to achieve; as a common representation has been
provided to the agent, we expect that these plans and goals
will be understandable to the supervisor.

We separate the functionality of this agent into four sub-
modules: the exploratory planner, responsible for taking
actions to obtain new information with which to update
the action model, the goal-directed planner, responsible
for achieving goals given by the supervisor, the transition
model learner, responsible for updating the agent’s model
of the world, and the controller, responsible for determin-
ing when to explore, achieve goals, and update the model,
as well as communicating with the supervisor. We sepa-
rate exploration planning from goal achievement planning
due to typical goal-based planners seek states, not novelty,
and therefore standard heuristics and other optimizations are
likely to not be useful for exploration. Each submodule is in-
tended to work in a domain-independent fashion, with data
represented in a relational fashion. We now describe the cur-
rent design of each submodule.
Exploratory Planner: Given an initial state s, an interaction
history (〈s0, a0, s1〉, 〈s1, a1, s2〉, . . .), and a domain model
of the transition function λ , the exploratory planner is ex-
pected to find a plan π that seeks novel observations of the
environment. In prior work by, e.g., (Sequeira, Melo, and
Paiva 2011; Hester and Stone 2017), novelty is recognized as
an important intrinsic motivation that rewards exploration.
In each work, novelty encourages taking actions unlike other
actions taken in the same or similar states. We would like to
build on this notion to encourage exploration in a relational
context. As relational environments can have a very large
number of states, we consider the novelty of taking an ac-
tion with respect to individual literals; we will build a map
tracking how many times each ground action has been taken
in the presence of each ground literal that shares parameters
with it. All literals that share parameters with an action will
vote based on how often the action was taken in the presence
of that literal. In this manner, we will determine actions with
high novelty. We will also use the novelty of a literal-action
pair, combined with the cost of reaching a state with that lit-
eral, to encourage exploratory plans that achieve high nov-
elty levels.
Goal Achievement Planner: This module will be provided
by a traditional automated planner: given an initial state s,
a goal g and a domain model of the transition function λ,
it provides a plan π expected to lead to a state that satisfies
g (i.e., s |= g). We will initially consider Metric-FF (Hoff-
mann 2003), for its ability to plan based on action knowl-
edge containing metrics.
Controller: At each time step, the controller receives a state
st from the environment and a request from the supervisor
in the form of a set of goals [g]t; it generates a new action
at to act in the environment and explains that action to the



supervisor via a current goal gt and a plan to achieve it πt.
It calls upon the exploratory and goal planners to create the
plans, but must determine the goal itself. This requires the
controller to manage the exploration-exploitation tradeoff,
as well as choose a goal that best satisfies the supervisor’s
current request. When taking exploratory actions, the con-
troller’s explanation consists of the symbol exploration in
lieu of a goal, and its exploratory plan.

The exploration-exploitation tradeoff is characterized as
follows: In the initial stages of acting in an environment, an
agent can not be expected to have sufficient knowledge to
exploit; furthermore, in some cases, the supervisor’s request
may be an empty set of goals. In these cases, exploration is
an obvious choice. Similarly, if the agent has repeatedly ful-
filled a particular goal successfully, exploration is unlikely to
be necessary before fulfilling that goal in a request. In this
situation, goal achievement is the obvious choice. To satisfy
these needs, the controller will simply choose to pursue a
supervisor’s goal as long as a plan can be constructed to do
so. At other times, exploratory planning will be performed.

When multiple supervisor goals are achievable, the con-
troller will use domain independent motivation-based goal
selection techniques to choose among them, as described in
work by Wilson et al 2013. In this strategy, an urgency value
between 0 and 1 is calculated for each motivation (including
social, exploratory, and opportunity) at each time step. Then,
each goal available is assigned a fitness value for each moti-
vation. A goal is selected that maximizes urgency-weighted
fitness.
Transition Model Learner: Given a history of interactions
(〈s0, a0, s1〉, 〈s1, a1, s2〉, . . .), the transition model learner
must find a model of the transition function λ that minimizes
error over the interaction history. While the agent is learning
the effects of actions, a human is watching and may ask the
agent to explain itself. One rationale behind learning an ac-
tion model is to reduce the knowledge engineering behavior
of the system designer. It may also be true that the designer
could make a mistake in the action model, which the agent
could overcome by learning the correct model.

Each time the agent executes an action, we save the pre
and post states as a case corresponding to that action. In
this way, we can begin to estimate what the preconditions
and effects of actions are over time. Every time an action is
executed and a new case is added, if the case is not iden-
tical to a previous case, we re-compute the preconditions
and effects of that action. In our initial studies we will use
approaches similar to OBSERVER (Wang 1995) and FOIL
(Quinlan 1990).

We expect that future versions of this agent will relax as-
sumptions including that of a deterministic, fully observable
environment, and initial knowledge of the supervisor’s satis-
faction function. We hope to extend to more complex expla-
nation and request representations. We expect that the goal-
directed planning will become more difficult given a par-
tially observable domain and probabilistic actions (see Fig-
ure 2 in Jimeńez et al. (2012) for a summary of models under
different domain conditions). Our design represents only an
initial agent; there is a great deal of room for expansion.

Environment Controller 
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Planner 
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Figure 2: Architecture for Exploratory and Goal-Driven Au-
tonomous Agent

Evaluating Explainable Autonomous Agents
We are interested in evaluating agents in complex game
worlds, to provide challenge in terms of exploration, diverse
goals, and plan complexity. In initial experiments, we ex-
pect to model the supervisor using an oracle with a constant
supervision function that deterministically introduces new
goals at predetermined times or based on a state of the envi-
ronment.

Appropriate metrics for evaluation of these agents revolve
around the supervisor’s satisfaction and understanding. We
would like to evaluate the change in the supervisor’s satis-
faction over time, as more exploration allows an agent to bet-
ter satisfy goals more quickly. The degree to which a human
supervisor understands why an agent is failing to achieve
a goal is also important; fundamentally, we are interested
in explanations to make the interaction with the agent less
frustrating, and we expect this frustration to decrease as the
human understands the agent better. This can be measured
subjectively through direct questions to a group of human
players, but also (possibly) objectively through the requests
the supervisor makes. Under the hypothesis that a supervisor
who understands an agent will change their request behav-
ior to suit the agent’s capabilities, the quality of explanations
can be measured based on the percentage of user requests
that are actually achievable for the agent.

Discussion
Video games provide a great testbed, as well as applica-
tion domain, for research on explainable autonomous agents.
The opportunities for exploration and challenges for de-
veloping and communicating plans provide for strong ex-
perimentation. Research on explainable autonomous agents
provides new challenges not encountered by reinforcement
learning agents, planning and execution agents, or self-
motivated agents; however, research from each is applica-
ble. The explainable autonomous agent framework provides
lots of room for growth; we have described a novel agent
designed for initial research, but expect to grow far beyond
that. Many research problems must be solved to create com-
petent explainable autonomous agents.
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