
Abstract
Agents operating in complex and dynamic domains
may observe changes that affect the agent’s
ability to achieve its goals. Goal transformations
allow unachievable goals to be converted into
similar achievable goals. Previous work has
examined transformation of goals within the state-
spaced planner PRODIGY. This paper examines
goal transformation within the MIDCA
architecture. We introduce goal transformation at
the metacognitive level as well as goal
transformation in a Hierarchical Task Network
planner and discuss the costs and benefits of each
approach. We evaluate goal transformations in
MIDCA using a modified, resource limited version
of the classical blocksworld planning domain,
demonstrating the benefit of achieving higher
scoring goals due to goal transformations.

1 Introduction
Effective performance in highly dynamic environments
requires the discharge of many classical-planning
assumptions held in the artificial intelligence commmunity.
For example, the closed world assumption is not a practical
strategy. The world is under continual change, and planning
is often a matter of adjusting to the world as new
information is discovered, whether during planning or
during execution. However, the adjustment that planners
classically perform given exogenous events entails change
with regard to the knowledge concerning the current state of
the world and, in response, adaptation of the current plan.
During execution of plans, outcomes may diverge from
expectations, so plans are again adjusted accordingly (see as
far back as [Tate, et al., 1990]). The contention of this
paper, however, is that the adjustment of the goals is often
required in addition to adjustment of the plans themselves.

Recent work on goal reasoning [Aha, et al., 2013;
Hawes, 2011] has started to examine how intelligent agents
can reason about and generate their own goals instead of

always depending upon a human user directly. Broadly
construed, the topic concerns complex systems that self-
manage their desired goal states [Vattam, et al., 2013]. In
the decision-making process, goals are not simply given as
input from a human, rather they constitute representations
that the system itself formulates. Here we examine the idea
that goals also represent malleable knowledge structures that
an agent can adapt and change as the situation warrants;
they are not static.

When the world changes during planning or during
execution (in the real world, a clear chronological line
between the two is not always present), goals may become
obsolete. For example, it makes little sense to pursue the
goal of securing a town center if the battlefield has shifted to
an adjacent location. At such a point, a robust planner must
be able to alter the goal minimally to compensate;
otherwise, a correct plan to secure the old location will not
be useful at execution time. We view a goal transformation
to be a movement in a goal space and show how such a
procedure can be incorporated into various mechanisms of a
cognitive architecture.

The rest of this paper is organized as follows. Section 2
introduces the goal transformation formalism, and Section 3
describes the MIDCA cognitive architecture within which
we have implemented such transformations. Section 4
discusses the differences in goal transformation mechanisms
(i.e., at the planning level or the metacognitive level).
Section 5 presents experiments and discusses the results.
Related work is discussed in Section 6, and we conclude in
Section 7.

2 Goal Transformations
Early work by Cox and Veloso [1998] a r g u e that goals
can exist in an abstraction hierarchy whereby some goals
specify desired state predicates that are more general than
others. The concept introduced in their work is that an
important strategy for re-planning in dynamic environ-
ments is to shift goals along this hierarchy and other goal
spaces. Such movement is cal led a goal transformation.

Goal Transformation and Goal Reasoning

Michael T. Cox

Wright State Research Institute, Beavercreek, OH
michael.cox@wright.edu

Dustin Dannenhauer
Lehigh University, Bethlehem, PA

dtd212@lehigh.edu

 The goal arguments and predicates may be moved
along an abstraction hierarchy, an enumerated set, a num-
ber line, or a component partonomy. For example, concre-
tion and specialization are downward movements through
an abstraction hierarchy on either goal arguments or pred-
icates respectively; abstraction and generalization are
their inverses. Escalation and erosion move the goal up
or down enumerated (or numerical) ordered sets of argument
values. Insertion and retraction either adds or deletes a
goal from the current set of states the planner must achieve.
Substitution replaces one goal with an equivalent (either
logical, e.g., DeMorgans Law, or semantic). The identity
transformation makes no change.

A number of such goal changes are inherent in the
classical planning process. For example, subgoaling on
the preconditions of a planning operator can be consid-
ered a kind of goal insertion transformation. Also, when
a rationale-based sensing monitor suggests a plan-based
cut [Alavi 2016], this is equivalent to a goal retraction.

2.1 Planning Formalism
A classical planning domain is defined [Ghallab, et al.,
2004] as a finite state-transition system in which each state
𝑠𝑠∈ 𝑆𝑆 = {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛} is a finite set of ground atoms. A
planning operator is a triple o = (head(o), pre(o), eff(o)),
where pre(o) and eff(o) are preconditions and effects. Each
action, 𝛼𝛼 ∈ 𝐴𝐴 is a ground instance of some operator o. An
action is executable in a state s if s ⊨ pre(𝛼𝛼).

For a classical planning domain, the state-transition sys-
tem is a tuple Σ = (𝑆𝑆,𝐴𝐴, γ), 1 where 𝑆𝑆 is the set of all states,
and 𝐴𝐴 is the set of all actions as above. In addition, gamma
is a state transition function 𝛾𝛾: 𝑆𝑆 × 𝐴𝐴→ 𝑆𝑆 that returns a re-
sulting state of an executed action given a current state, i.e.,
𝛾𝛾(𝑠𝑠, α) → 𝑠𝑠′.

A classical planning problem is a triple 𝑃𝑃 = (Σ, 𝑠𝑠0,𝑔𝑔),
where Σ is a state transition system, 𝑠𝑠0 is the initial state,
and 𝑔𝑔 (the goal formula) is a conjunction of first-order liter-
als. A goal state 𝑠𝑠𝑔𝑔 satisfies a goal if 𝑠𝑠𝑔𝑔 ⊨ 𝑔𝑔. A plan π rep-
resents a sequence of plan steps 〈𝛼𝛼1𝛼𝛼2 … 𝛼𝛼𝑛𝑛〉 that incremen-
tally changes the state. Here we will use a notation that ena-
bles indexing of the individual steps or sub-sequences with-
in the plan. In equation 1 we use the subscript 𝑔𝑔 to indicate
a plan that achieves a specific goal. A plan is composed of
the first action 𝛼𝛼1 followed by the rest of the plan 𝜋𝜋𝑔𝑔[2 . .𝑛𝑛].

𝜋𝜋𝑔𝑔[1. .𝑛𝑛] = 𝛼𝛼1 | 𝜋𝜋𝑔𝑔[2 . .𝑛𝑛] = 〈𝛼𝛼1𝛼𝛼2 … 𝛼𝛼𝑛𝑛〉 (1)

Now we recursively redefine gamma as mapping either
single actions or plans to states. Hence 𝜋𝜋𝑔𝑔 is a solution for 𝑃𝑃
if it is executable in 𝑠𝑠0 and 𝛾𝛾(𝑠𝑠0,𝜋𝜋𝑔𝑔) ⊨ 𝑔𝑔. Recursively from
the initial state, execution of the plan results in the goal state
(see equation 2).

𝛾𝛾�𝑠𝑠0,𝜋𝜋𝑔𝑔� = 𝛾𝛾 � 𝛾𝛾(𝑠𝑠0, α1), 𝜋𝜋𝑔𝑔[2. .𝑛𝑛]� → 𝑠𝑠𝑔𝑔 (2)

1 We ignore the set of exogenous events 𝐸𝐸 that are outside the

control (and possibly the observation) of the reasoning system.

2.2 Interpretation and Goal Transformation
Goal reasoning has recently extended the classical formula-
tion by relaxing the assumption that the goal is always given
by an external user [Cox 2007; see also Ghallab, et al.,
2014). Although the planning process may start with an ex-
ogenous goal, a dynamic environment may present unex-
pected events with which the system must contend. In re-
sponse a goal reasoner must be able to generate new goals at
execution time as situations warrant. Furthermore, goals
themselves may change over time as an adaptive response to
a dynamic world.

More formally, the function 𝛽𝛽: 𝑆𝑆 × 𝐺𝐺→ 𝐺𝐺 returns a (pos-
sibly new) goal 𝑔𝑔′ given some state 𝑠𝑠 and a current goal 𝑔𝑔
[Cox 2016]. Here we posit a simple model of goal change
∆ = {δ | δ:𝐺𝐺 → 𝐺𝐺} that represents the set of potential oper-
ations or transformations on goals an agent may select. A
goal transformation is a tuple δ = (head(δ), parameter(δ),
pre(δ), res(δ)), where pre(δ) and res(δ) are δ’s preconditions
and result. Then given 𝑠𝑠 and 𝑔𝑔, the agent makes a decision
〈δ1, δ2, … δ𝑛𝑛〉 that results in β output δ𝑛𝑛(… δ2(δ1(𝑔𝑔))) = 𝑔𝑔′.
As such, β represents a state interpretation process that per-
ceives the world with respect to its goals, changing them or
formulating new ones as necessary.

Goals are dynamic and subject to change. But there exists
an element of ∆, the identity transformation δ𝐼𝐼(𝑔𝑔𝑖𝑖) = 𝑔𝑔𝑖𝑖 for
all 𝑔𝑔𝑖𝑖 ∈ 𝐺𝐺, i.e., the tuple (𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑔𝑔, {𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖},𝑔𝑔), which
represents the decision not to change 𝑔𝑔 given 𝑠𝑠, i.e., the
agent’s selection of δ𝐼𝐼 for 𝛽𝛽. Further, goals can be created or
formulated given any state, including the initial state 𝑠𝑠0, and
a goal state, including the empty state ∅. This is represented
by the goal insertion transformation δ∗() = 𝑔𝑔. This distin-
guished operation has been a particular focus of the goal
reasoning community (see [Klenk et al., 2013]). Given that
it relaxes the assumption that goals are necessarily provided
by a human, this significantly differs from classical plan-
ning. Furthermore as shown by the specification of β in Ta-
ble 1, insertion is treated differently than others (see [Cox,
2016] for further details regarding δ∗).

Assuming an agent’s goal agenda Ĝ =
{𝑔𝑔1,𝑔𝑔2, …𝑔𝑔𝑐𝑐 , …𝑔𝑔𝑛𝑛} containing the current goal 𝑔𝑔𝑐𝑐, Table 1
shows the details of β. The function (1) uses choose to select
a sequence of goal operations to apply; (2) alters the goal
agenda; and (3) returns a (possibly) new or changed goal.
Section 4 will present a simple example of an application of
these functions we implemented for the empirical result
shown subsequently.

2.3 Model of Planning, Acting, and Interpretation
A plan to achieve a goal 𝛽𝛽(𝑠𝑠,∅) can now be represented as
𝜋𝜋𝛽𝛽(𝑠𝑠,∅). Using this notation, we combine plans, action (plan
execution), and interpretation as in equation 3 [Cox 2016].

𝛾𝛾�𝑠𝑠0,𝜋𝜋𝛽𝛽(𝑠𝑠0,∅)� = 𝛾𝛾 � 𝛾𝛾(𝑠𝑠0, α1), 𝜋𝜋𝛽𝛽�𝛾𝛾(𝑠𝑠0,α1),𝛽𝛽(𝑠𝑠0,∅)�[2. .𝑛𝑛]�(3)

However when goals change (or new ones are added) due
to 𝛽𝛽, plans may need to change as well. Thus, the goal rea-
soner may need to re-plan and thereby alter the length and
composition of the remainder of the plan. To cover this con-
tingency, we define a (re)planning function phi that takes as
input a state, goal, and current plan as in expression 4.

𝜑𝜑�𝑠𝑠,𝑔𝑔′,𝜋𝜋𝑔𝑔[1. .𝑛𝑛]� → 𝜋𝜋𝑔𝑔′[1. .𝑚𝑚] (4)

Table 1. The beta and choose functions. Note that although ∆ is an
ordered set, ∆� is a sequence where 𝑖𝑖𝑛𝑛 is treated similar to the set
operator ∈ and “–“ like set difference. The function reverse
maintains the order of ∆ since choose will change it.

𝛽𝛽(𝑠𝑠: 𝑆𝑆;𝑔𝑔𝑐𝑐:𝐺𝐺):𝐺𝐺
∆� ← 𝑡𝑡𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡𝑠𝑠𝑖𝑖(𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖(𝑠𝑠,𝑔𝑔𝑐𝑐 , ∆))
if δ∗in ∆� then
 if ∆� = 〈δ∗〉 then
 Ĝ ← {𝑔𝑔1,𝑔𝑔2, …𝑔𝑔𝑐𝑐 , …𝑔𝑔𝑛𝑛} ∪ δ∗()
 𝛽𝛽← 𝑔𝑔𝑐𝑐 ⋀ δ∗
 else 〈δ1, δ2, … δ𝑚𝑚〉 = ∆� ← ∆� - δ∗()
 Ĝ ← �𝑔𝑔1,𝑔𝑔2, … δ𝑚𝑚(… δ2(δ1(𝑔𝑔𝑐𝑐))), …𝑔𝑔𝑛𝑛� ∪ δ∗()
 𝛽𝛽← δ𝑚𝑚(… δ2(δ1(𝑔𝑔𝑐𝑐))) ⋀ δ∗()
else Ĝ ← �𝑔𝑔1,𝑔𝑔2, … δ𝑚𝑚(… δ2(δ1(𝑔𝑔𝑐𝑐))), …𝑔𝑔𝑛𝑛�
 for 〈δ1, δ2, … δ𝑚𝑚〉 = ∆�
 𝛽𝛽← δ𝑚𝑚(… δ2(δ1(𝑔𝑔𝑐𝑐)))

𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖(𝑠𝑠: 𝑆𝑆,𝑔𝑔𝑐𝑐:𝐺𝐺, ∆ = {δ1, δ2, … }: 𝑝𝑝𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖): 𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑐𝑐𝑖𝑖
if ∆ = { } then 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖 ← 〈 〉
else if ∀x|x ∈ 𝑝𝑝𝑡𝑡𝑖𝑖(δ1) ⋀ 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) then
 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖 ← δ1|𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖(∆ − {δ1})
 else choose (∆ − {δ1})

Note that in the general case 𝑔𝑔′ may or may not be equal
to 𝑔𝑔. Inserting φ into equation 3 in place of 𝜋𝜋, we obtain
equation 5 below. The formalism is general across different
variations of goal reasoning and (re)planning.

𝛾𝛾�𝑠𝑠0,𝜑𝜑(𝑠𝑠0,𝛽𝛽(𝑠𝑠0,∅),∅)� = 𝛾𝛾 (𝛾𝛾(𝑠𝑠0,𝛼𝛼1), (5)
 𝜑𝜑�𝛾𝛾(𝑠𝑠0,𝛼𝛼1),𝛽𝛽�𝛾𝛾(𝑠𝑠0,𝛼𝛼1),𝛽𝛽(𝑠𝑠0,∅)�,𝜑𝜑(𝑠𝑠0,𝛽𝛽(𝑠𝑠0,∅),∅)[2. .𝑛𝑛]�]])

3 MIDCA
The Metacognitive Integrated Dual-Cycle Architecture
(MIDCA) [Cox et al., 2016; Paisner et al., 2013] is an
architecture for an agent that has both cognitive and
metacognitive capabilities. Figure 1 shows the two
reasoning cycles. The cognitive cycle directly reasons about
and interacts with the environment; it consists of the
following phases: Perceive, Interpret, Evaluate, Intend, Plan,
Act. Perceive receives input from the environment. Interpret
processes the input, noting any anomalies or opportunities
and may generate new goals (i.e., the goal insertion
transformation, 𝛽𝛽(𝑝𝑝𝑗𝑗,∅) → 𝑔𝑔𝑛𝑛, shown in Figure 1). Interpret
partially corresponds to the function β. Evaluate checks to
see which goals the agent is pursuing are still relevant.
Intend chooses which goal 𝑔𝑔𝑐𝑐 the agent should be currently
pursuing from the goal agenda Ĝ. Plan generates a plan 𝜋𝜋𝑘𝑘

to achieve the agent’s current goals; it corresponds to the
function φ of expression 4. Finally, the Act phase executes
the next action in the agent’s current plan; it corresponds to
the function γ of equation 2.

Much like the cognitive cycle, the metacognitive cycle
(abstractly represented at the top of Figure 1) goes through
multiple phases. The primary difference between the
metacognitive and cognitive cycles is the source of
perception and reception of actions. Metacognitive actions
are applied to the cognitive layer instead of the
environment. Regarding input, instead of receiving input
from the environment, like the cognitive Perceive phase, the
metacognitive layer receives input (i.e., in the form of a
cognitive trace: data reported from the cognitive phases, see
Figure 2) from the cognitive layer. The trace is then
processed via phases during metacognition, in a similar
fashion to the cognitive layer. From the trace, any anomalies
or opportunities will be noted, and new goals introduced.
Updates are performed on the agent’s metacognitive goals,
ensuring they are still applicable. A metacognitive Intend
phase chooses a metacognitive goal to pursue, and then
generates a plan to achieve that goal. Finally, like the
cognitive Act phase, the the next action in the meta-level
plan will be executed by the metacognitive Control phase

World =Ψ

Memory
Mission &
Goals()

World Model (MΨ)
Episodic Memory
Semantic Memory

& Ontology

Plans() &
Percepts ()

Problem
Solving

Comprehension

goal change goal input
goal

insertion

Intend

Act
(& Speak)

Plan

Evaluate

Perceive
(& Listen)

Interpret

Goals
subgoal

Task

Actions Percepts

MΨ

Hypotheses

MΨ

MΨ

Intend

Controller

Plan

Evaluate

Monitor

Interpret

Meta Goals

goal
insertionsubgoal

Task Hypotheses

Activations Trace

Memory
Reasoning Trace

()

Strategies

Episodic Memory

Metaknowledge

Self Model ()

Mental Domain = Ω

Goal Management
goal change goal input

Figure 1. MIDCA Architecture (adapted from [Cox et al., 2016])

(e.g., change the goal at the cognitive level, ∆𝑔𝑔 = 𝛽𝛽(𝑠𝑠,𝑔𝑔) →
𝑔𝑔′).

4 Goal Transformations in MIDCA
Goal transformations are required in at least two cases:
(i) when the agent senses a change in the environment that
dictates an adjustment either during the planning process or
during the execution of plan steps; (ii) when the planner
cannot solve the current problem because of a lack of
known resources. In this paper we focus on the second case.
The agent is presented with a situation where resources
needed to achieve an original goal become unavailable.
Within the cognitive architecture there are at least two
distinct places to perform goal transformation: (1) within the
planning system of the Plan phase of the cognitive layer and
(2) within the metacognitive reasoning component.

As an example, consider the generalization
transformation. For this paper, we use a specific
transformation δ𝑔𝑔𝑔𝑔 (see Table 2). This operates on goals
representing predicate relations between objects of type
𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠. If goal change occurs during metacognitive reasoning,
the state 𝑠𝑠 comes from the cognitive trace τ; otherwise
during planning, access to 𝑠𝑠 is direct.
Table 2. Definition of goal generalization and its inverse, goal
specialization. Bergmann [2002] provides the notation for the class
hiearchy 𝑪𝑪𝑪𝑪 having leaf classes 𝐿𝐿𝐶𝐶 ⊆ 𝑪𝑪𝑪𝑪 and whose root class 𝐶𝐶
has the superclass ⊤, i.e., 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ⊤. Precondition 𝑝𝑝𝑡𝑡𝑖𝑖2 of
both transformations assures that a parent or child class 𝑝𝑝’ exists.
State 𝑠𝑠 in 𝑝𝑝𝑡𝑡𝑖𝑖2 is outside the scope of both operations and instead
within the scope of choose from Table 1.

δ𝑔𝑔𝑔𝑔(𝑔𝑔𝑐𝑐:𝐺𝐺):𝐺𝐺
ℎ𝑖𝑖𝑠𝑠𝑖𝑖(δ𝑔𝑔𝑔𝑔) = 𝑔𝑔𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠𝑔𝑔𝑖𝑖𝑔𝑔𝑠𝑠𝑖𝑖𝑖𝑖𝑜𝑜𝑛𝑛
𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(δ𝑔𝑔𝑔𝑔) = 𝑔𝑔𝑐𝑐 = 𝑝𝑝(𝑜𝑜𝑂𝑂𝑂𝑂1, 𝑜𝑜𝑂𝑂𝑂𝑂2)
𝑝𝑝𝑡𝑡𝑖𝑖1(δ𝑔𝑔𝑔𝑔) = 𝑝𝑝 ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑜𝑜𝑂𝑂𝑂𝑂1 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 ⋀ 𝑜𝑜𝑂𝑂𝑂𝑂2 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠
𝑝𝑝𝑡𝑡𝑖𝑖2(δ𝑔𝑔𝑔𝑔) = ∃𝑝𝑝, 𝑝𝑝′|𝑝𝑝 ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑝𝑝′ ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝′

⋀ 𝑝𝑝 = �𝑝𝑝𝑛𝑛𝑠𝑠𝑚𝑚𝑔𝑔 , 𝑝𝑝′, (𝑝𝑝.𝐴𝐴1,𝑝𝑝.𝐴𝐴2, …𝑝𝑝.𝐴𝐴𝑚𝑚)� ⋀ 𝑝𝑝′ ≠ ⊤
𝑝𝑝𝑡𝑡𝑖𝑖3(δ𝑔𝑔𝑔𝑔) = 𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑠𝑠𝑜𝑜𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖𝑠𝑠𝑙𝑙𝑜𝑜𝑡𝑡𝐺𝐺𝑜𝑜𝑠𝑠𝑔𝑔(𝑠𝑠,𝑔𝑔𝑐𝑐)
pre(δ𝑔𝑔𝑔𝑔) = {𝑝𝑝𝑡𝑡𝑖𝑖1(δ𝑔𝑔𝑔𝑔), 𝑝𝑝𝑡𝑡𝑖𝑖2(δ𝑔𝑔𝑔𝑔), 𝑝𝑝𝑡𝑡𝑖𝑖3(δ𝑔𝑔𝑔𝑔)}
𝑡𝑡𝑖𝑖𝑠𝑠(δ𝑔𝑔𝑔𝑔) = 𝑝𝑝′(𝑜𝑜𝑂𝑂𝑂𝑂1, 𝑜𝑜𝑂𝑂𝑂𝑂2)

δ𝑠𝑠𝑠𝑠(𝑔𝑔𝑐𝑐:𝐺𝐺):𝐺𝐺
ℎ𝑖𝑖𝑠𝑠𝑖𝑖(δ𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖𝑠𝑠𝑔𝑔𝑖𝑖𝑔𝑔𝑠𝑠𝑖𝑖𝑖𝑖𝑜𝑜𝑛𝑛
𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(δ𝑠𝑠𝑠𝑠) = 𝑔𝑔𝑐𝑐 = 𝑝𝑝(𝑜𝑜𝑂𝑂𝑂𝑂1, 𝑜𝑜𝑂𝑂𝑂𝑂2)
𝑝𝑝𝑡𝑡𝑖𝑖1(δ𝑠𝑠𝑠𝑠) = 𝑝𝑝 ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑜𝑜𝑂𝑂𝑂𝑂1 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 ⋀ 𝑜𝑜𝑂𝑂𝑂𝑂2 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠
𝑝𝑝𝑡𝑡𝑖𝑖2(δ𝑠𝑠𝑠𝑠) = ∃𝑝𝑝′, 𝑝𝑝|𝑝𝑝′ ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑝𝑝 ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ = 𝑝𝑝

⋀ 𝑝𝑝′ = �𝑝𝑝𝑛𝑛𝑠𝑠𝑚𝑚𝑔𝑔
′ , 𝑝𝑝, (𝑝𝑝′.𝐴𝐴1, 𝑝𝑝′.𝐴𝐴2, … 𝑝𝑝′.𝐴𝐴𝑚𝑚)� ⋀ 𝑝𝑝′ ∉ 𝐿𝐿𝐶𝐶

𝑝𝑝𝑡𝑡𝑖𝑖3(δ𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑔𝑔𝑡𝑡𝑠𝑠𝑙𝑙𝑖𝑖𝑠𝑠𝑜𝑜𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖𝑠𝑠𝑙𝑙𝑜𝑜𝑡𝑡𝐺𝐺𝑜𝑜𝑠𝑠𝑔𝑔(𝑠𝑠,𝑔𝑔𝑐𝑐)
pre(δ𝑠𝑠𝑠𝑠) = {𝑝𝑝𝑡𝑡𝑖𝑖1(δ𝑠𝑠𝑠𝑠), 𝑝𝑝𝑡𝑡𝑖𝑖2(δ𝑠𝑠𝑠𝑠), 𝑝𝑝𝑡𝑡𝑖𝑖3(δ𝑠𝑠𝑠𝑠)}
𝑡𝑡𝑖𝑖𝑠𝑠(δ𝑠𝑠𝑠𝑠) = 𝑝𝑝′(𝑜𝑜𝑂𝑂𝑂𝑂1, 𝑜𝑜𝑂𝑂𝑂𝑂2)

Now assuming operations ∆ = {δ𝑔𝑔𝑔𝑔 , δ𝑠𝑠𝑠𝑠, δ𝐼𝐼}, an agent
may start with the goal to achieve a stable tower of blocks,
i.e., 𝑔𝑔1 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑂𝑂𝑔𝑔𝑖𝑖−𝑜𝑜𝑛𝑛(𝐴𝐴,𝐵𝐵), etc. But given an unexpected
lack of mortar resources (e.g., another agent may have re-
cently used them), the agent might change the goal during
execution (i.e., at action 𝛼𝛼𝑘𝑘 in 𝜋𝜋𝑔𝑔1[1. . 𝑘𝑘], where 𝑘𝑘 < 𝑛𝑛) to a

less durable tower, that is, 𝑔𝑔2 = 𝑜𝑜𝑛𝑛(𝐴𝐴, 𝐵𝐵), where 𝑜𝑜𝑛𝑛 is the
parent of stable-on within a class hierarchy. We then repre-
sent an application of the goal generalization δ𝑔𝑔𝑔𝑔(𝑔𝑔1) = 𝑔𝑔2
in the expression 𝛽𝛽�𝛾𝛾(𝑠𝑠0,𝜋𝜋𝑔𝑔1[1. . 𝑘𝑘]),𝑔𝑔1� → 𝑔𝑔2.

4.1 Cognitive Level Goal Transformations
Goal transformations can be implemented within a
Hierarchical Task Network (HTN) planner’s methods. HTN
planning is a powerful planning paradigm because of its
incorporation of domain knowledge into methods, which
guide the plan generation. Assuming goal transformations of
the domain are known by the domain engineer, this
knowledge can be incorporated into the HTN methods. For
example, an extra precondition can be added to the method
that checks the state for an available resource. If the
resource is available, the method will guide the search in
one direction utilizing that resource. If it is unavailable, it
will guide the search in another direction (one that may be
less desireable but uses no resources). In this way, various
goal transformations can be performed during plan
generation. This approach contains all of the goal
transformation knowledge within the planner. The costs of
this approach are the extra knowledge burden and the
encoding of it into the HTN methods. The benefit is a self-
contained goal-transformation enabled planner that can
perform goal transformations during plan generation. This
allows a goal transformation to occur without any additional
cognitive cycles.

4.2 Metacognitive Goal Transformations
Alternatively, goal transformation can occur at the
metacognitive level. No goal transformation knowledge
needs to be encoded in the HTN methods. Instead, in the
example where a resource is not available yielding the
current goal as unachievable, the planner would notify the
metacognitive reasoner. For example, the planner could fail
to produce a plan (or log a warning) in the cognitive trace
(input to metacognitive layer; see Figure 2). The
metacognitive layer would perceive the warning or failure to
produce a plan and begin its reasoning mechanism. As a
result the metacognitive layer could decide to transform the
previous goal to a new goal that did not require the resource,
and perform a goal retraction followed by insertion. Then,
during the next cognitive Intend phase, the cognitive layer
will choose to pursue the recently inserted goal.
 Figure 2 shows the last two phases of the trace when the
cognitive Plan phase fails to produce a plan for the goal to
achieve a stable tower. The goal for a stable tower is
encoded as {stable-on(A,D), stable-on(C,A), stable-
on(B,C)}. Stable-on is a predicate similar to on with the
additional requirement that a piece of mortar is used to
cement the blocks into place. In this example, only 1 piece
of mortar is available instead of the needed 3 (one for each
stable-on). The cognitive level Plan phase will attempt to
plan for the stable tower goal and fail. Figure 2 shows the
segment of the trace used to identify the failure of the
cognitive Plan phase (and thus trigger metacognitive
reasoning). In the trace (τ) segment we see the results of

Intend and Plan phases (this is part of the whole trace
produced from every phase executed thus far in MIDCA’s
execution). The trace segment for Intend records as input
the pending goals (PG) and selected goals (SG) (Ĝ = 𝑃𝑃𝐺𝐺 ∪
 𝑆𝑆𝐺𝐺). Here we see pending goals contains the goal atoms for
the stable tower. Intend, the phase with the primary purpose
of selecting which goals to commit to, moves these three
goal atoms to SG as its output. At this point in time
everything at the cognitive level is proceeding as expected.

The next phase, Plan, is tasked with using the newly
selected goals (SG) along with the current world state
(WORLD) to produce a plan. At this point in MIDCA’s
execution, the world state contains only a single piece of
mortar, not enough for all three of the stable-on goal atoms.
Once the Plan phase finishes and the trace output showing
no plan is recorded, the metacognitive Monitor phase
retrieves the trace segment and the metacognitive Interpret
notes an anomaly: the cognitive level Plan phase produced
no plan. The expectation used to detect this anomaly is that
the Plan phase should produce a non-empty plan that
achieves the selected goals (given a mental domain model of
operators for each phase, this kind of expectation would fall
under the immediate type of expectations categorized in
[Dannenhauer and Munoz-Avila 2015b]. We use expert
authored expectations here and leave a mental domain
model and resulting expectations for future work). The
metacognitive Intend phase also inserts a new meta goal
which is to have an achievable goal at the cognitive level.
Specifically, let the cognitive goal, cg1 = {stable-on(A,D),
stable-on(C,A), stable-on(B,C)} and the meta goal be
achieveable(cg1). Next, the metacognitive Intend phase
commits to achieving achieveable(cg1). The metacognitive
Plan phase produces a single action plan consisting of the
action transform-goal(cg1). Finally, the meta Control phase
performs the action transform-goal(cg1) (which uses a
generalization transformation) and yields the new
transformed goal cg1

T= {on(A,D), on(C,A), stable-on(B,C)}.
cg1

T is then updated in MIDCA’s memory and

metareasoning finishes and cognitive reasoning continues.
On the following cognitive Intend phase the goal cg1

T will
be selected and the cognitive Plan produces a non-empty
plan.

The cost of the metacognitive approach is the requirement
for more cognitive cycles: first the cognitive level Plan
phase must fail (or issue a warning in the cognitive trace)
before the metacognitive layer performs a transformation
and inserts a new goal. Then the cognitive layer can
continue and in the next Intend phase the new goal will be
selected. The benefits of this approach are a planner-
independent mechanism for goal transformation, and
explicit transformation of goals.

5 Computational Experiments
We evaluated MIDCA’s goal transformation in a modified
blocks world domain. The blocks world is a well known
planning domain where an agent is tasked with arranging
blocks on a table. The actions available to the agent are
pickup from and putdown on the table, unstack, and stack.
The modification we introduced is a resource called mortar
that allows the agent to build sturdier towers, and thus
achieve more points for those towers. Specifically, for every
two blocks adjoined with mortar the agent receives an extra
point. Each block in the tower is also worth one point. New
operators are introduced that allow blocks to be stacked
using mortar, in addition to the operators to stack without
mortar. The former achieves the goal of stable-on(A,B);
whereas the latter achieves on(A,B). The change from the
fomer to the latter is an example of the generalization
transformation.

There is always a finite amount of mortar. If there is not
enough mortar to stack blocks, the agent will need to change
the goal and resort to stacking without mortar and reduced
points rewarded for that tower. This requires a
transformation of the goal, because the original goal is
always to build sturdy, mortar towers. We ran experiments
varying the number of resources (i.e., mortar) and the
number of goals. If the agent did not have enough mortar,
the solid-tower goals could not be achieved, and without a
transformation of the goal, the agent would gain no reward.

5.1 Empirical Results
We collected data from 260 instances of MIDCA varying
resources and number of goals. Figure 3 shows the results of
MIDCA using a goal transformation strategy, whereas
Figure 4 shows the results with fixed, static goals (i.e., no
goal change). The y-axis is the percentage of the maximum
score the agent was able to achieve (i.e. the maximum score
is the score received in the case all towers use mortar). By
comparing the graphs, it is clear that when the number of
resources is sufficient for the complexity of the problem,
both graphs show equivalent performance. But when
resources relative to the number of goals are scarce,
MIDCA is able to achieve a higher score by changing goals.
In Figure 4, one side of the graph drops to zero under
resource limitations. By changing goals appropriately,

Figure 2. Trace τ of cognitive activity

MIDCA is able to achieve a higher performance score in
Figure 3.

The volumetric graphs illustrate additional trends when
sliced by orthogonal planes. Figure 5 shows the
performance score when the number of goals is held
constant at 100 (g=100 defines a plane). It directly compares
performance with goal transformations and without.

Likewise, Figure 6 shows the performance when the
number of mortar resources is held at five and compares
both with goal transformations and without. As problems
become ever more complex with larger numbers of goals,
performance degrades more without goal transformations.

6 Related Work
Goal-driven autonomy (GDA) agents (a kind of goal
reasoning agent) generate new goals as the agent encounters
discrepancies between the agent’s expectations of the
outcome of its actions and the observed outcomes in the
state [Aha, et al., 2010; Klenk et al., 2013; Dannenhauer
and Munoz-Avila, 2015a]. When such a discrepancy occurs,
GDA agents generate an explanation for the discrepancy
(e.g., a truck is not moving as expected because it is stuck in
the mud), and generate a new goal accordingly (e.g.,
unstuck the truck). Goals are not usually transformed other
than retraction and insertion; new goals are generated,
possibly replacing the previous goals or to aid achieving
those goals. To some extent, the work here is more general;
goal generation or formulation is one possible
transformation (i.e., goal insertion) out of many changes a
goal reasoner may select.

The work here is an extension of the previous effort by
Cox and Veloso [1998], although a number of differences
exist. The goal transformations implemented previously
were for the state-space planner PRODIGY [Veloso et al.,
1995], whereas the current research implents them for the
hierarchical planner SHOP [Nau et al., 2003] embedded
within MIDCA. Thus we have shown that the concpet is
more general than either and placed it firmly within the
context of goal reasoning. Additionally, the work described
here is situated within a cognitive architecture, and although
we explicitly chose to demostrate the same empirical trend,
we chose a different problem domain (modified blocksworld
versus air campaign planning), again showing significant
generality.

Oversubscription planning [Smith, 2004] addresses the
problem of generating plans for many goals by choosing a
subset of goals when all of them cannot be achieved so as to
assist classical planners which might otherwise fail. This is
similar to a retraction transformation whereby the system

Figure 4. Performance without goal transformation

Figure 3. Performance with goal transformation

Figure 5. Performance as a function of resource availability
given 100 goals

Figure 6. Performance as a function of problem complexity
(i.e., number of goals) given 5 resources

drops particular goals. Goal transformations include this
type of planning decision and others.

The roots of our work go back to Michalski’s early
inferential theory of learning that views the process of
solving a problem as a series of knowledge transmutations
[Michalski, 1993], steps taken to modify a body of
knowledge to attain a solution. It distinguishes between
generalization and concretion transmutations.
Generalization transmutations transform specific knowledge
into more general knowledge. For example, if an agent
observes truck(a) and color(a,blue) and in the absence of
other facts about other trucks it might hypothesize that (F1)
for all ?x truck(?x) ⇒ color(?x, blue) (question marks
represent variables).

Concretion is the opposite process whereby general
knowledge is made more specific. For example, assuming
F1 is true and if the agent observes truck(a), it will infer
color(a,blue). In our work, we are using similar ideas, that
of transmutations applied to desired goals.

In the context of planning, changing the plan
representation has been long explored, for example in the
context of abstraction planning [Knoblock, 1990; Bergmann
and Wilke, 1995]. Analogous to Michalski’s generalization
and concretion transmutations, plans can be generalized. For
example a plan trace move(truck1,locA,locB),
load(truck1,lockA,obj1) can be abstracted into
move(?truck,locA,locB), load(?truck,lockA,obj1).
Concretion transforms the plan in the opposite direction.
Such generalizations are done with the aim of facilitating
problem solving. For instance, some generalizations involve
not only replacing constants for variables but eliminating
some of the conditions in the problem. A key point in
abstraction planning is the distinction between
generalization and abstraction; in the former the planning
language remains the same (e.g., when replacing constant
with variables, the actions remain the same). In contrast, in
abstraction the language itself changes. For example, the
plan trace move(truck1,locA,locB), load(truck1,lockA,obj1)
can be replaced by the construct
moveANDload(truck1,locA,locB,obj1); ”moveANDload” is
not a name appearing in the concrete domain but a construct
to reason at higher levels. Generalization and abstraction
might make the problem easier (i.e., by removing hard
constraints; such as requiring a special kind of vehicle to
transport some specific goods). When a plan is solved in the
generalized or abstracted form, it is transformed into a
concrete solution. Nevertheless whether abstracted or
generalized, goals generated still refer to the planning
domain. In contrast, in our work, transmuted goals at the
meta-level refer to the process of generating the plan rather
than the planning domain itself.

Akin to plan abstraction, work on learning HTNs aims at
generating hierarchies that subsume plan traces; although
the aim of HTN learning algorithms is to learn the
abstractions. Typically, these algorithms use as input some
additional knowledge such as task semantics defined as
(preconditions,effects) pairs as in Hogg [2008] or Horn
clauses as in Nejati [2006] to find sound ways to abstract the

plan traces. The generated hierarchies represent knowledge
about the domain unlike in our work where the transformed
meta-level goals reflect knowledge about the process not the
domain itself.

7 Conclusion
The idea of goal change is a fundamental concept for

intelligent systems; people change their mind all the time,
and for good reason. A system that reasons about its goals
and its ability to achieve them will sometimes have to adapt
to changing information and changing environments if it is
to act rationally. Here we have argued that adaptation is not
always a mattter of plan change, rather sometimes an agent
will change it goals instead. But deciding whether to change
the plan or the goal is itself a hard decision not addressed
here. Instead we have presented a model of goal
transformations and introduced the concept within the
MIDCA cognitive architecture, showing the effects on
performance. A more complete algorithm to select a given
choice or ones to implement specific transformations are left
to future research. However, goal transformations need to be
used conservatively and with caution. Otherwise in all
instances, the substitution of the current goal set with the
empty set by a series of retraction transformations can be
satisfied by the null plan, an unsatisfactory proposition.

Acknowledgements
This work was supported in part by ONR under grants
N00014-15-1-2080 and N00014-15-C-0077 and by NSF
under grant 1217888. We thank the anonymous reviewers
for their comments and suggestions.

References
[Aha et al, 2013] Aha, D. W.; Cox, M. T.; and Munoz-

Avila, H. eds. 2013. Goal Reasoning: Papers from the
ACS workshop, Technical Report CS-TR-5029,
Department of Computer Science, University of
Maryland, College Park, MD.

[Aha, et al., 2010] Aha, D. W.; Klenk, M.; Munoz-Avila,
H.; Ram, A.; and Shapiro, D. eds. 2010. Goal-driven
Autonomy: Notes from the AAAI Workshop. Menlo Park,
CA: AAAI Press.

[Alavi 2016] Alavi, Z., and Cox, M. T. (in press). Rationale-
based visual planning monitors. To appear in M. Roberts
(Ed.), Working Notes of the 4th Workshop on Goal
Reasoning. New York, IJCAI-16.

[Bergmann 2002] Bergmann, R. Experience management.
Berlin: Springer, 2002.

[Bergmann and Wilke 1995] Bergmann, Ralph, and
Wolfgang Wilke.Building and refining abstract planning
cases by change of representation language. JAIR 3
(1995): 53-118.

 [Cox 2016] Cox, M. T. in press, A model of planning,
action and interpretation with goal reasoning. To appear
in Fourth Annual Conference on Advances in Cognitive

Systems 2016. Palo Alto, CA: Cognitive Systems
Foundation.

[Cox 2007] Cox, M. T. 2007, Perpetual self-aware cognitive
agents. AI Magazine 28(1), 32-45.

[Cox et al., 2016] Cox, M. T., Alavi, Z., Dannenhauer, D.,
Eyorokon, V., Munoz-Avila, H., and Perlis, D. 2016.
MIDCA: A metacognitive, integrated dual-cycle
architecture for self-regulated autonomy. In Proceedings
of the 30th AAAI Conference on Artificial Intelligence,
Vol. 5 (pp. 3712-3718). Palo Alto, CA: AAAI Press.

[Cox and Veloso, 1998] Cox, M. T., and Veloso, M. M.
1998. Goal transformations in continuous planning. In
M. desJardins (Ed.), Proceedings of the 1998 AAAI Fall
Symposium on Distributed Continual Planning (pp. 23-
30). Menlo Park, CA: AAAI Press / The MIT Press.

[Dannenhauer and Munoz-Avila, 2015a] Dustin
Dannenhauer and Hector Muñoz-Avila. Goal-Driven
Autonomy with Semantically-annotated Hierarchical
Cases. International Conference on Case-based
Reasoning (ICCBR-15). Springer. 2015.

[Dannenhauer and Munoz-Avia, 2015b] Dannenhauer,
Dustin and Hector Munoz-Avila. Raising expectations in
GDA agents acting in dynamic environments.
Proceedings of the 24th International Conference on
Artificial Intelligence (IJCAI-15). AAAI Press, 2015.

[Hawes, 2011] Nick Hawes. A Survey of Motivation
Frameworks for Intelligent Systems. Artificial
Intelligence, 175(5-6), 1020-1036. 2011.

[Hogg, et al., 2008] Hogg, C.; Munoz-Avila, H.; Kutur, U.
HTN-MAKER: Learning HTNs with minimal additional
knowledge engineering required. In Proceedings of
AAAI 2008.

[Ghallab, et al., 2014] Ghallab, M., Nau, D., and Traverso,
P. 2014. The Actor’s View of Automated Planning and
Acting: A Position Paper. Artificial Intelligence 208: 1-
17.

[Ghallab, et al., 2004] Ghallab, M.; Nau, D.; and Traverso,
P. 2004. Automated Planning: Theory & Practice. San
Francisco: Elsevier.

[Klenk et al., 2013] Klenk, M., Molineaux, M. and Aha, D.
W. 2013. Goal-driven autonomy for responding to
unexpected events in strategy simulations.
Computational Intelligence, 29(2), 187–206.

[Knoblock, 1990] Craig A Knoblock. Learning abstraction
hierarchies for problem solving. In AAAI-90, pages 923–
928, 1990.

[Michalski, 1993] Ryszard S. Michalski. Inferential theory
of learning: Developing foundations. 1993.

[Nau et al., 2003] Nau, D.; Au, T.; Ilghami, O.; Kuter, U.;
Murdock, J.; Wu, D.; and Yaman, F. 2003. SHOP2: An
HTN Planning System. Journal of Artificial Intelligence
Research 20: 379–404.

[Nejati, N., et al., 2006] Nejati, N.; Langley, P.; and Konik,
T. 2006. Learning hierarchical task networks by
observation. In Proc. of ICML’06, 665–672. New York,
NY, USA: ACM.

 [Paisner et al., 2013] Paisner, M., Maynord, M., Cox, M.
T., & Perlis, D. (2013). Goal-driven autonomy in
dynamic environments. In D. W. Aha, M. T. Cox, & H.
Munoz-Avila (Eds.), Goal Reasoning: Papers from the
ACS workshop (pp. 79-94). Tech. Rep. No. CS-TR-5029.
College Park, MD: University of Maryland, Department
of Computer Science.

[Smith, 2004] Smith, David E. "Choosing Objectives in
Over-Subscription Planning."ICAPS. Vol. 4. 2004

[Tate, et al., 1990] Tate A., Hendler, J, and Drummond, M.
1990. A Review of AI Planning Techniques. In J. Allen,
J. Hendler, and A. Tate, eds., Readings in Planning, 26-
49. San Fran- cisco: Morgan Kaufmann

[Vattam et al., 2013] Vattam, S., Klenk, M., Molineaux, M.,
and Aha, D. W. 2013. Breadth of Approaches to Goal
Reasoning, A Research Survey, Naval Research Lab
Washington DC.

[Veloso et al., 1995] Veloso, M. M., Carbonell, J., and et al.,
Integrating Planning and Learning: The PRODIGY
Architecture, Journal of Experimental and Theoretical
AI 7, 81–120, 1995.

