
Abstract 
Agents operating in complex and dynamic domains 
may observe changes that affect the agent’s 
ability to achieve its goals. Goal transformations 
allow unachievable goals to be converted into 
similar achievable goals. Previous work has 
examined transformation of goals within the state-
spaced planner PRODIGY. This paper examines 
goal transformation within the MIDCA 
architecture. We introduce goal transformation at 
the metacognitive level as well as goal 
transformation in a Hierarchical Task Network 
planner and discuss the costs and benefits of each 
approach. We evaluate goal transformations in 
MIDCA using a modified, resource limited version 
of the classical blocksworld planning domain, 
demonstrating the benefit of achieving higher 
scoring goals due to goal transformations.  

1 Introduction 
Effective performance in highly dynamic environments 
requires the discharge of many classical-planning 
assumptions held in the artificial intelligence commmunity. 
For example, the closed world assumption is not a practical 
strategy. The world is under continual change, and planning 
is often a matter of adjusting to the world as new 
information is discovered, whether during planning or 
during execution. However, the adjustment that planners 
classically perform given exogenous events entails change 
with regard to the knowledge concerning the current state of 
the world and, in response, adaptation of the current plan. 
During execution of plans, outcomes may diverge from 
expectations, so plans are again adjusted accordingly (see as 
far back as [Tate, et al., 1990]). The contention of this 
paper, however, is that the adjustment of the goals is often 
required in addition to  adjustment of the plans themselves. 

Recent work on goal reasoning [Aha, et al., 2013; 
Hawes, 2011] has started to examine how intelligent agents 
can reason about and generate their own goals instead of 

always depending upon a human user directly. Broadly 
construed, the topic concerns complex systems that self-
manage their desired goal states [Vattam, et al., 2013]. In 
the decision-making process, goals are not simply given as 
input from a human, rather they constitute representations 
that the system itself formulates. Here we examine the idea 
that goals also represent malleable knowledge structures that 
an agent can adapt and change as the situation warrants; 
they are not static. 

When the world changes during planning or during 
execution (in the real world, a clear chronological line 
between the two is not always present), goals may become 
obsolete. For example, it makes little sense to pursue the 
goal of securing a town center if the battlefield has shifted to 
an adjacent location. At such a point, a robust planner must 
be able to alter the goal minimally to compensate; 
otherwise, a correct plan to secure the old location will not 
be useful at execution time. We view a goal transformation 
to be a movement in a goal space and show how such a 
procedure can be incorporated into various mechanisms of a 
cognitive architecture. 

The rest of this paper is organized as follows. Section 2 
introduces the goal transformation formalism, and Section 3 
describes the MIDCA cognitive architecture within which 
we have implemented such transformations. Section 4 
discusses the differences in goal transformation mechanisms 
(i.e., at the planning level or the metacognitive level). 
Section 5 presents experiments and discusses the results. 
Related work is discussed in Section 6, and we conclude in 
Section 7. 

2 Goal Transformations 
Early work by Cox and Veloso [1998] a r g u e  that goals 
can exist in an abstraction hierarchy whereby some goals 
specify desired state predicates that are more general than 
others. The concept introduced in their work is that an 
important strategy for re-planning in dynamic environ-
ments is to shift goals along this hierarchy and other goal 
spaces. Such movement is  cal led a goal transformation.  
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 The goal arguments and predicates may be moved 
along an abstraction hierarchy, an enumerated set, a num-
ber line, or a component partonomy. For example, concre-
tion and specialization are downward movements through 
an abstraction hierarchy on either goal arguments or pred-
icates respectively; abstraction and generalization are 
their inverses. Escalation and erosion move the goal up 
or down enumerated (or numerical) ordered sets of argument 
values. Insertion and retraction either adds or deletes a 
goal from the current set of states the planner must achieve. 
Substitution replaces one goal with an equivalent (either 
logical, e.g., DeMorgans Law, or semantic). The identity 
transformation makes no change.  

A number of such goal changes are inherent in the 
classical planning process. For example, subgoaling on 
the preconditions of a planning operator can be consid-
ered a kind of goal insertion transformation. Also, when 
a rationale-based sensing monitor suggests a plan-based 
cut [Alavi 2016], this is equivalent to a goal retraction. 

2.1  Planning Formalism 
A classical planning domain is defined [Ghallab, et al., 
2004] as a finite state-transition system in which each state 
𝑠𝑠∈ 𝑆𝑆 = {𝑠𝑠1, … , 𝑠𝑠𝑛𝑛} is a finite set of ground atoms. A 
planning operator is a triple o = (head(o), pre(o), eff(o)), 
where pre(o) and eff(o) are preconditions and effects. Each 
action, 𝛼𝛼 ∈ 𝐴𝐴 is a ground instance of some operator o. An 
action is executable in a state s if s ⊨ pre(𝛼𝛼).   

For a classical planning domain, the state-transition sys-
tem is a tuple Σ = (𝑆𝑆,𝐴𝐴, γ), 1 where 𝑆𝑆 is the set of all states, 
and 𝐴𝐴 is the set of all actions as above. In addition, gamma 
is a state transition function 𝛾𝛾: 𝑆𝑆 × 𝐴𝐴→ 𝑆𝑆 that returns a re-
sulting state of an executed action given a current state, i.e., 
𝛾𝛾(𝑠𝑠, α) → 𝑠𝑠′.  

A classical planning problem is a triple 𝑃𝑃 = (Σ, 𝑠𝑠0,𝑔𝑔), 
where Σ is a state transition system, 𝑠𝑠0 is the initial state, 
and 𝑔𝑔 (the goal formula) is a conjunction of first-order liter-
als. A goal state 𝑠𝑠𝑔𝑔 satisfies a goal if 𝑠𝑠𝑔𝑔 ⊨ 𝑔𝑔. A plan π rep-
resents a sequence of plan steps 〈𝛼𝛼1𝛼𝛼2 … 𝛼𝛼𝑛𝑛〉 that incremen-
tally changes the state. Here we will use a notation that ena-
bles indexing of the individual steps or sub-sequences with-
in the plan. In equation 1 we use the subscript 𝑔𝑔 to indicate 
a plan that achieves a specific goal. A plan is composed of 
the first action 𝛼𝛼1 followed by the rest of the plan 𝜋𝜋𝑔𝑔[2 . .𝑛𝑛]. 

𝜋𝜋𝑔𝑔[1. .𝑛𝑛] = 𝛼𝛼1 | 𝜋𝜋𝑔𝑔[2 . .𝑛𝑛] =  〈𝛼𝛼1𝛼𝛼2 … 𝛼𝛼𝑛𝑛〉    (1) 

Now we recursively redefine gamma as mapping either 
single actions or plans to states. Hence 𝜋𝜋𝑔𝑔 is a solution for 𝑃𝑃 
if it is executable in 𝑠𝑠0 and 𝛾𝛾(𝑠𝑠0,𝜋𝜋𝑔𝑔) ⊨ 𝑔𝑔. Recursively from 
the initial state, execution of the plan results in the goal state 
(see equation 2).  

𝛾𝛾�𝑠𝑠0,𝜋𝜋𝑔𝑔� = 𝛾𝛾 � 𝛾𝛾(𝑠𝑠0, α1),  𝜋𝜋𝑔𝑔[2. .𝑛𝑛]� → 𝑠𝑠𝑔𝑔    (2) 

                                                 
1 We ignore the set of exogenous events 𝐸𝐸 that are outside the 

control (and possibly the observation) of the reasoning system. 

2.2  Interpretation and Goal Transformation 
Goal reasoning has recently extended the classical formula-
tion by relaxing the assumption that the goal is always given 
by an external user [Cox 2007; see also Ghallab, et al., 
2014). Although the planning process may start with an ex-
ogenous goal, a dynamic environment may present unex-
pected events with which the system must contend. In re-
sponse a goal reasoner must be able to generate new goals at 
execution time as situations warrant. Furthermore, goals 
themselves may change over time as an adaptive response to 
a dynamic world. 

More formally, the function 𝛽𝛽: 𝑆𝑆 × 𝐺𝐺→ 𝐺𝐺 returns a (pos-
sibly new) goal 𝑔𝑔′ given some state 𝑠𝑠 and a current goal 𝑔𝑔 
[Cox 2016]. Here we posit a simple model of goal change 
∆ =  {δ | δ:𝐺𝐺 → 𝐺𝐺} that represents the set of potential oper-
ations or transformations on goals an agent may select. A 
goal transformation is a tuple δ = (head(δ), parameter(δ), 
pre(δ), res(δ)), where pre(δ) and res(δ) are δ’s preconditions 
and result. Then given 𝑠𝑠 and 𝑔𝑔, the agent makes a decision 
〈δ1, δ2, … δ𝑛𝑛〉 that results in β output δ𝑛𝑛(… δ2(δ1(𝑔𝑔))) = 𝑔𝑔′. 
As such, β represents a state interpretation process that per-
ceives the world with respect to its goals, changing them or 
formulating new ones as necessary.  

Goals are dynamic and subject to change. But there exists 
an element of ∆, the identity transformation δ𝐼𝐼(𝑔𝑔𝑖𝑖) = 𝑔𝑔𝑖𝑖 for 
all 𝑔𝑔𝑖𝑖 ∈ 𝐺𝐺, i.e., the tuple (𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖,𝑔𝑔, {𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖},𝑔𝑔), which 
represents the decision not to change 𝑔𝑔 given 𝑠𝑠, i.e., the 
agent’s selection of δ𝐼𝐼 for 𝛽𝛽. Further, goals can be created or 
formulated given any state, including the initial state 𝑠𝑠0, and 
a goal state, including the empty state ∅. This is represented 
by the goal insertion transformation δ∗() = 𝑔𝑔. This distin-
guished operation has been a particular focus of the goal 
reasoning community (see [Klenk et al., 2013]). Given that 
it relaxes the assumption that goals are necessarily provided 
by a human, this significantly differs from classical plan-
ning. Furthermore as shown by the specification of β in Ta-
ble 1, insertion is treated differently than others (see [Cox, 
2016] for further details regarding δ∗). 

Assuming an agent’s goal agenda Ĝ =
{𝑔𝑔1,𝑔𝑔2, …𝑔𝑔𝑐𝑐 , …𝑔𝑔𝑛𝑛} containing the current goal 𝑔𝑔𝑐𝑐, Table 1 
shows the details of β. The function (1) uses choose to select 
a sequence of goal operations to apply; (2) alters the goal 
agenda; and (3) returns a (possibly) new or changed goal. 
Section 4 will present a simple example of an application of 
these functions we implemented for the empirical result 
shown subsequently. 

2.3 Model of Planning, Acting, and Interpretation 
A plan to achieve a goal 𝛽𝛽(𝑠𝑠,∅) can now be represented as 
𝜋𝜋𝛽𝛽(𝑠𝑠,∅). Using this notation, we combine plans, action (plan 
execution), and interpretation as in equation 3 [Cox 2016]. 

𝛾𝛾�𝑠𝑠0,𝜋𝜋𝛽𝛽(𝑠𝑠0,∅)� = 𝛾𝛾 � 𝛾𝛾(𝑠𝑠0, α1),  𝜋𝜋𝛽𝛽�𝛾𝛾(𝑠𝑠0,α1),𝛽𝛽(𝑠𝑠0,∅)�[2. .𝑛𝑛]�(3) 



However when goals change (or new ones are added) due 
to 𝛽𝛽, plans may need to change as well. Thus, the goal rea-
soner may need to re-plan and thereby alter the length and 
composition of the remainder of the plan. To cover this con-
tingency, we define a (re)planning function phi that takes as 
input a state, goal, and current plan as in expression 4.  

𝜑𝜑�𝑠𝑠,𝑔𝑔′,𝜋𝜋𝑔𝑔[1. .𝑛𝑛]� →  𝜋𝜋𝑔𝑔′[1. .𝑚𝑚]         (4) 

Table 1. The beta and choose functions. Note that although ∆ is an 
ordered set, ∆� is a sequence where 𝑖𝑖𝑛𝑛 is treated similar to the set 
operator ∈ and “–“ like set difference. The function reverse 
maintains the order of ∆ since choose will change it. 

𝛽𝛽(𝑠𝑠: 𝑆𝑆;𝑔𝑔𝑐𝑐:𝐺𝐺):𝐺𝐺  
∆� ← 𝑡𝑡𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡𝑠𝑠𝑖𝑖(𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖(𝑠𝑠,𝑔𝑔𝑐𝑐 , ∆))  
if δ∗in ∆� then 
        if ∆� = 〈δ∗〉 then 
                  Ĝ ← {𝑔𝑔1,𝑔𝑔2, …𝑔𝑔𝑐𝑐 , …𝑔𝑔𝑛𝑛} ∪  δ∗() 
                𝛽𝛽← 𝑔𝑔𝑐𝑐  ⋀ δ∗ 
        else 〈δ1, δ2, … δ𝑚𝑚〉 = ∆� ← ∆� - δ∗()         
               Ĝ ← �𝑔𝑔1,𝑔𝑔2, … δ𝑚𝑚(… δ2(δ1(𝑔𝑔𝑐𝑐))), …𝑔𝑔𝑛𝑛� ∪  δ∗() 
                𝛽𝛽← δ𝑚𝑚(… δ2(δ1(𝑔𝑔𝑐𝑐))) ⋀ δ∗() 
else  Ĝ ← �𝑔𝑔1,𝑔𝑔2, … δ𝑚𝑚(… δ2(δ1(𝑔𝑔𝑐𝑐))), …𝑔𝑔𝑛𝑛�  
        for 〈δ1, δ2, … δ𝑚𝑚〉 = ∆� 
        𝛽𝛽← δ𝑚𝑚(… δ2(δ1(𝑔𝑔𝑐𝑐))) 

𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖(𝑠𝑠: 𝑆𝑆,𝑔𝑔𝑐𝑐:𝐺𝐺, ∆ = {δ1, δ2, … }: 𝑝𝑝𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖): 𝑠𝑠𝑖𝑖𝑠𝑠𝑡𝑡𝑖𝑖𝑛𝑛𝑐𝑐𝑖𝑖 
if ∆ = { } then 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖 ← 〈 〉 
else if ∀x|x ∈ 𝑝𝑝𝑡𝑡𝑖𝑖(δ1) ⋀  𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥) then 
                 𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖 ← δ1|𝑐𝑐ℎ𝑜𝑜𝑜𝑜𝑠𝑠𝑖𝑖(∆ − {δ1}) 
        else choose (∆ − {δ1}) 

Note that in the general case 𝑔𝑔′ may or may not be equal 
to 𝑔𝑔. Inserting φ into equation 3 in place of 𝜋𝜋, we obtain 
equation 5 below. The formalism is general across different 
variations of goal reasoning and (re)planning. 

𝛾𝛾�𝑠𝑠0,𝜑𝜑(𝑠𝑠0,𝛽𝛽(𝑠𝑠0,∅),∅)� =  𝛾𝛾 ( 𝛾𝛾(𝑠𝑠0,𝛼𝛼1),        (5) 
     𝜑𝜑�𝛾𝛾(𝑠𝑠0,𝛼𝛼1),𝛽𝛽�𝛾𝛾(𝑠𝑠0,𝛼𝛼1),𝛽𝛽(𝑠𝑠0,∅)�,𝜑𝜑(𝑠𝑠0,𝛽𝛽(𝑠𝑠0,∅),∅)[2. .𝑛𝑛]�]]) 

3 MIDCA 
The Metacognitive Integrated Dual-Cycle Architecture 
(MIDCA) [Cox et al., 2016; Paisner et al., 2013] is an 
architecture for an agent that has both cognitive and 
metacognitive capabilities. Figure 1 shows the two 
reasoning cycles. The cognitive cycle directly reasons about 
and interacts with the environment; it consists of the 
following phases: Perceive, Interpret, Evaluate, Intend, Plan, 
Act. Perceive receives input from the environment. Interpret 
processes the input, noting any anomalies or opportunities 
and may generate new goals (i.e., the goal insertion 
transformation, 𝛽𝛽(𝑝𝑝𝑗𝑗,∅) → 𝑔𝑔𝑛𝑛, shown in Figure 1). Interpret 
partially corresponds to the function β. Evaluate checks to 
see which goals the agent is pursuing are still relevant. 
Intend chooses which goal 𝑔𝑔𝑐𝑐 the agent should be currently 
pursuing from the goal agenda Ĝ. Plan generates a plan 𝜋𝜋𝑘𝑘 

to achieve the agent’s current goals; it corresponds to the 
function φ of expression 4. Finally, the Act phase executes 
the next action in the agent’s current plan; it corresponds to 
the function γ of equation 2. 

Much like the cognitive cycle, the metacognitive cycle 
(abstractly represented at the top of Figure 1) goes through 
multiple phases. The primary difference between the 
metacognitive and cognitive cycles is the source of 
perception and reception of actions. Metacognitive actions 
are applied to the cognitive layer instead of the 
environment. Regarding input, instead of receiving input 
from the environment, like the cognitive Perceive phase, the 
metacognitive layer receives input (i.e., in the form of a 
cognitive trace: data reported from the cognitive phases, see 
Figure 2) from the cognitive layer. The trace is then 
processed via phases during metacognition, in a similar 
fashion to the cognitive layer. From the trace, any anomalies 
or opportunities will be noted, and new goals introduced. 
Updates are performed on the agent’s metacognitive goals, 
ensuring they are still applicable. A metacognitive Intend 
phase chooses a metacognitive goal to pursue, and then 
generates a plan to achieve that goal. Finally, like the 
cognitive Act phase, the the next action in the meta-level 
plan will be executed by the metacognitive Control phase 
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(e.g., change the goal at the cognitive level, ∆𝑔𝑔 = 𝛽𝛽(𝑠𝑠,𝑔𝑔) →
𝑔𝑔′). 

4 Goal Transformations in MIDCA 
Goal transformations are required in at least two cases: 
(i) when the agent senses a change in the environment that 
dictates an adjustment either during the planning process or 
during the execution of plan steps; (ii) when the planner 
cannot solve the current problem because of a lack of 
known resources. In this paper we focus on the second case. 
The agent is presented with a situation where resources 
needed to achieve an original goal become unavailable. 
Within the cognitive architecture there are at least two 
distinct places to perform goal transformation: (1) within the 
planning system of the Plan phase of the cognitive layer and 
(2) within the metacognitive reasoning component. 

As an example, consider the generalization 
transformation. For this paper, we use a specific 
transformation δ𝑔𝑔𝑔𝑔  (see Table 2). This operates on goals 
representing predicate relations between objects of type 
𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠. If goal change occurs during metacognitive reasoning, 
the state 𝑠𝑠 comes from the cognitive trace τ; otherwise 
during planning, access to 𝑠𝑠 is direct. 
Table 2. Definition of goal generalization and its inverse, goal 
specialization. Bergmann [2002] provides the notation for the class 
hiearchy 𝑪𝑪𝑪𝑪 having leaf classes 𝐿𝐿𝐶𝐶 ⊆ 𝑪𝑪𝑪𝑪 and whose root class 𝐶𝐶 
has the superclass ⊤, i.e., 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ⊤. Precondition 𝑝𝑝𝑡𝑡𝑖𝑖2 of 
both transformations assures that a parent or child class 𝑝𝑝’ exists. 
State 𝑠𝑠 in 𝑝𝑝𝑡𝑡𝑖𝑖2 is outside the scope of both operations and instead 
within the scope of choose from Table 1. 

δ𝑔𝑔𝑔𝑔(𝑔𝑔𝑐𝑐:𝐺𝐺):𝐺𝐺 
ℎ𝑖𝑖𝑠𝑠𝑖𝑖(δ𝑔𝑔𝑔𝑔) = 𝑔𝑔𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑠𝑠𝑔𝑔𝑖𝑖𝑔𝑔𝑠𝑠𝑖𝑖𝑖𝑖𝑜𝑜𝑛𝑛 
𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(δ𝑔𝑔𝑔𝑔) = 𝑔𝑔𝑐𝑐 = 𝑝𝑝(𝑜𝑜𝑂𝑂𝑂𝑂1, 𝑜𝑜𝑂𝑂𝑂𝑂2) 
𝑝𝑝𝑡𝑡𝑖𝑖1(δ𝑔𝑔𝑔𝑔) = 𝑝𝑝 ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑜𝑜𝑂𝑂𝑂𝑂1 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 ⋀ 𝑜𝑜𝑂𝑂𝑂𝑂2 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 
𝑝𝑝𝑡𝑡𝑖𝑖2(δ𝑔𝑔𝑔𝑔) = ∃𝑝𝑝, 𝑝𝑝′|𝑝𝑝 ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑝𝑝′ ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑝𝑝′ 

⋀ 𝑝𝑝 = �𝑝𝑝𝑛𝑛𝑠𝑠𝑚𝑚𝑔𝑔 , 𝑝𝑝′, (𝑝𝑝.𝐴𝐴1,𝑝𝑝.𝐴𝐴2, …𝑝𝑝.𝐴𝐴𝑚𝑚)� ⋀ 𝑝𝑝′ ≠ ⊤ 
𝑝𝑝𝑡𝑡𝑖𝑖3(δ𝑔𝑔𝑔𝑔) = 𝑔𝑔𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑠𝑠𝑜𝑜𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖𝑠𝑠𝑙𝑙𝑜𝑜𝑡𝑡𝐺𝐺𝑜𝑜𝑠𝑠𝑔𝑔(𝑠𝑠,𝑔𝑔𝑐𝑐) 
pre(δ𝑔𝑔𝑔𝑔) = {𝑝𝑝𝑡𝑡𝑖𝑖1(δ𝑔𝑔𝑔𝑔), 𝑝𝑝𝑡𝑡𝑖𝑖2(δ𝑔𝑔𝑔𝑔), 𝑝𝑝𝑡𝑡𝑖𝑖3(δ𝑔𝑔𝑔𝑔)} 
𝑡𝑡𝑖𝑖𝑠𝑠(δ𝑔𝑔𝑔𝑔) = 𝑝𝑝′(𝑜𝑜𝑂𝑂𝑂𝑂1, 𝑜𝑜𝑂𝑂𝑂𝑂2)  

δ𝑠𝑠𝑠𝑠(𝑔𝑔𝑐𝑐:𝐺𝐺):𝐺𝐺 
ℎ𝑖𝑖𝑠𝑠𝑖𝑖(δ𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖𝑠𝑠𝑔𝑔𝑖𝑖𝑔𝑔𝑠𝑠𝑖𝑖𝑖𝑖𝑜𝑜𝑛𝑛 
𝑝𝑝𝑠𝑠𝑡𝑡𝑠𝑠𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡(δ𝑠𝑠𝑠𝑠) = 𝑔𝑔𝑐𝑐 = 𝑝𝑝(𝑜𝑜𝑂𝑂𝑂𝑂1, 𝑜𝑜𝑂𝑂𝑂𝑂2) 
𝑝𝑝𝑡𝑡𝑖𝑖1(δ𝑠𝑠𝑠𝑠) = 𝑝𝑝 ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑜𝑜𝑂𝑂𝑂𝑂1 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 ⋀ 𝑜𝑜𝑂𝑂𝑂𝑂2 ∈ 𝑂𝑂𝑂𝑂𝑂𝑂𝑠𝑠 
𝑝𝑝𝑡𝑡𝑖𝑖2(δ𝑠𝑠𝑠𝑠) = ∃𝑝𝑝′, 𝑝𝑝|𝑝𝑝′ ∈ 𝑪𝑪𝑪𝑪 ⋀  𝑝𝑝 ∈ 𝑪𝑪𝑪𝑪 ⋀ 𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠′ = 𝑝𝑝 

⋀ 𝑝𝑝′ = �𝑝𝑝𝑛𝑛𝑠𝑠𝑚𝑚𝑔𝑔
′ , 𝑝𝑝, (𝑝𝑝′.𝐴𝐴1, 𝑝𝑝′.𝐴𝐴2, … 𝑝𝑝′.𝐴𝐴𝑚𝑚)� ⋀ 𝑝𝑝′ ∉ 𝐿𝐿𝐶𝐶  

𝑝𝑝𝑡𝑡𝑖𝑖3(δ𝑠𝑠𝑠𝑠) = 𝑠𝑠𝑡𝑡𝑡𝑡𝑝𝑝𝑔𝑔𝑡𝑡𝑠𝑠𝑙𝑙𝑖𝑖𝑠𝑠𝑜𝑜𝑡𝑡𝑡𝑡𝑐𝑐𝑖𝑖𝑠𝑠𝑙𝑙𝑜𝑜𝑡𝑡𝐺𝐺𝑜𝑜𝑠𝑠𝑔𝑔(𝑠𝑠,𝑔𝑔𝑐𝑐) 
pre(δ𝑠𝑠𝑠𝑠) = {𝑝𝑝𝑡𝑡𝑖𝑖1(δ𝑠𝑠𝑠𝑠), 𝑝𝑝𝑡𝑡𝑖𝑖2(δ𝑠𝑠𝑠𝑠), 𝑝𝑝𝑡𝑡𝑖𝑖3(δ𝑠𝑠𝑠𝑠)} 
𝑡𝑡𝑖𝑖𝑠𝑠(δ𝑠𝑠𝑠𝑠) = 𝑝𝑝′(𝑜𝑜𝑂𝑂𝑂𝑂1, 𝑜𝑜𝑂𝑂𝑂𝑂2) 

Now assuming operations ∆ = {δ𝑔𝑔𝑔𝑔 , δ𝑠𝑠𝑠𝑠, δ𝐼𝐼}, an agent 
may start with the goal to achieve a stable tower of blocks, 
i.e.,  𝑔𝑔1 = 𝑠𝑠𝑖𝑖𝑠𝑠𝑂𝑂𝑔𝑔𝑖𝑖−𝑜𝑜𝑛𝑛(𝐴𝐴,𝐵𝐵), etc. But given an unexpected 
lack of mortar resources (e.g., another agent may have re-
cently used them), the agent might change the goal during 
execution (i.e., at action 𝛼𝛼𝑘𝑘 in 𝜋𝜋𝑔𝑔1[1. . 𝑘𝑘], where 𝑘𝑘 < 𝑛𝑛) to a 

less durable tower, that is, 𝑔𝑔2 = 𝑜𝑜𝑛𝑛(𝐴𝐴, 𝐵𝐵), where 𝑜𝑜𝑛𝑛 is the 
parent of stable-on within a class hierarchy. We then repre-
sent an application of the goal generalization δ𝑔𝑔𝑔𝑔(𝑔𝑔1) = 𝑔𝑔2 
in the expression 𝛽𝛽�𝛾𝛾(𝑠𝑠0,𝜋𝜋𝑔𝑔1[1. . 𝑘𝑘]),𝑔𝑔1� → 𝑔𝑔2. 

4.1 Cognitive Level Goal Transformations 
Goal transformations can be implemented within a 
Hierarchical Task Network (HTN) planner’s methods. HTN 
planning is a powerful planning paradigm because of its 
incorporation of domain knowledge into methods, which 
guide the plan generation. Assuming goal transformations of 
the domain are known by the domain engineer, this 
knowledge can be incorporated into the HTN methods. For 
example, an extra precondition can be added to the method 
that checks the state for an available resource. If the 
resource is available, the method will guide the search in 
one direction utilizing that resource. If it is unavailable, it 
will guide the search in another direction (one that may be 
less desireable but uses no resources). In this way, various 
goal transformations can be performed during plan 
generation. This approach contains all of the goal 
transformation knowledge within the planner. The costs of 
this approach are the extra knowledge burden and the 
encoding of it into the HTN methods. The benefit is a self-
contained goal-transformation enabled planner that can 
perform goal transformations during plan generation. This 
allows a goal transformation to occur without any additional 
cognitive cycles.  

4.2 Metacognitive Goal Transformations 
Alternatively, goal transformation can occur at the 
metacognitive level. No goal transformation knowledge 
needs to be encoded in the HTN methods. Instead, in the 
example where a resource is not available yielding the 
current goal as unachievable, the planner would notify the 
metacognitive reasoner. For example, the planner could fail 
to produce a plan (or log a warning) in the cognitive trace 
(input to metacognitive layer; see Figure 2). The 
metacognitive layer would perceive the warning or failure to 
produce a plan and begin its reasoning mechanism. As a 
result the metacognitive layer could decide to transform the 
previous goal to a new goal that did not require the resource, 
and perform a goal retraction followed by insertion. Then, 
during the next cognitive Intend phase, the cognitive layer 
will choose to pursue the recently inserted goal.  
 Figure 2 shows the last two phases of the trace when the 
cognitive Plan phase fails to produce a plan for the goal to 
achieve a stable tower. The goal for a stable tower is 
encoded as {stable-on(A,D), stable-on(C,A), stable-
on(B,C)}. Stable-on is a predicate similar to on with the 
additional requirement that a piece of mortar is used to 
cement the blocks into place. In this example, only 1 piece 
of  mortar is available instead of the needed 3 (one for each 
stable-on). The cognitive level Plan phase will attempt to 
plan for the stable tower goal and fail. Figure 2 shows the 
segment of the trace used to identify the failure of the 
cognitive Plan phase (and thus trigger metacognitive 
reasoning). In the trace (τ) segment we see the results of 



Intend and Plan phases (this is part of the whole trace 
produced from every phase executed thus far in MIDCA’s 
execution). The trace segment for Intend records as input 
the pending goals (PG) and selected goals (SG) (Ĝ = 𝑃𝑃𝐺𝐺 ∪
 𝑆𝑆𝐺𝐺). Here we see pending goals contains the goal atoms for 
the stable tower. Intend, the phase with the primary purpose 
of selecting which goals to commit to, moves these three 
goal atoms to SG as its output. At this point in time 
everything at the cognitive level is proceeding as expected. 

The next phase, Plan, is tasked with using the newly 
selected goals (SG) along with the current world state 
(WORLD) to produce a plan. At this point in MIDCA’s 
execution, the world state contains only a single piece of 
mortar, not enough for all three of the stable-on goal atoms. 
Once the Plan phase finishes and the trace output showing 
no plan is recorded, the metacognitive Monitor phase 
retrieves the trace segment and the metacognitive Interpret 
notes an anomaly: the cognitive level Plan phase produced 
no plan. The expectation used to detect this anomaly is that 
the Plan phase should produce a non-empty plan that 
achieves the selected goals (given a mental domain model of 
operators for each phase, this kind of expectation would fall 
under the immediate type of expectations categorized in 
[Dannenhauer and Munoz-Avila 2015b]. We use expert 
authored expectations here and leave a mental domain 
model and resulting expectations for future work). The 
metacognitive Intend phase also inserts a new meta goal 
which is to have an achievable goal at the cognitive level. 
Specifically, let the cognitive goal, cg1 = {stable-on(A,D), 
stable-on(C,A), stable-on(B,C)} and the meta goal be 
achieveable(cg1). Next, the metacognitive Intend phase 
commits to achieving achieveable(cg1). The metacognitive 
Plan phase produces a single action plan consisting of the 
action transform-goal(cg1). Finally, the meta Control phase 
performs the action transform-goal(cg1) (which uses a 
generalization transformation) and yields the new 
transformed goal cg1

T= {on(A,D), on(C,A), stable-on(B,C)}. 
cg1

T is then updated in MIDCA’s memory and 

metareasoning finishes and cognitive reasoning continues. 
On the following cognitive Intend phase the goal cg1

T  will 
be selected and the cognitive Plan produces a non-empty 
plan.      

The cost of the metacognitive approach is the requirement 
for more cognitive cycles: first the cognitive level Plan 
phase must fail (or issue a warning in the cognitive trace) 
before the metacognitive layer performs a transformation 
and inserts a new goal. Then the cognitive layer can 
continue and in the next Intend phase the new goal will be 
selected. The benefits of this approach are a planner-
independent mechanism for goal transformation, and 
explicit transformation of goals.  

5 Computational Experiments 
We evaluated MIDCA’s goal transformation in a modified 
blocks world domain. The blocks world is a well known 
planning domain where an agent is tasked with arranging 
blocks on a table. The actions available to the agent are 
pickup from and putdown on the table, unstack, and stack. 
The modification we introduced is a resource called mortar 
that allows the agent to build sturdier towers, and thus 
achieve more points for those towers. Specifically, for every 
two blocks adjoined with mortar the agent receives an extra 
point. Each block in the tower is also worth one point. New 
operators are introduced that allow blocks to be stacked 
using mortar, in addition to the operators to stack without 
mortar. The former achieves the goal of stable-on(A,B); 
whereas the latter achieves on(A,B). The change from the 
fomer to the latter is an example of the generalization 
transformation.  

There is always a finite amount of mortar. If there is not 
enough mortar to stack blocks, the agent will need to change 
the goal and resort to stacking without mortar and reduced 
points rewarded for that tower. This requires a 
transformation of the goal, because the original goal is 
always to build sturdy, mortar towers. We ran experiments 
varying the number of resources (i.e., mortar) and the 
number of goals. If the agent did not have enough mortar, 
the solid-tower goals could not be achieved, and without a 
transformation of the goal, the agent would gain no reward. 

5.1 Empirical Results 
We collected data from 260 instances of MIDCA varying 
resources and number of goals. Figure 3 shows the results of 
MIDCA using a goal transformation strategy, whereas 
Figure 4 shows the results with fixed, static goals (i.e., no 
goal change). The y-axis is the percentage of the maximum 
score the agent was able to achieve (i.e. the maximum score 
is the score received in the case all towers use mortar). By 
comparing the graphs, it is clear that when the number of 
resources is sufficient for the complexity of the problem, 
both graphs show equivalent performance. But when 
resources relative to the number of goals are scarce, 
MIDCA is able to achieve a higher score by changing goals. 
In Figure 4, one side of the graph drops to zero under 
resource limitations. By changing goals appropriately, 

Figure 2. Trace τ of cognitive activity 



MIDCA is able to achieve a higher performance score in 
Figure 3.  

The volumetric graphs illustrate additional trends when 
sliced by orthogonal planes. Figure 5 shows the 
performance score when the number of goals is held 
constant at 100 (g=100 defines a plane). It directly compares 
performance with goal transformations and without. 

Likewise, Figure 6 shows the performance when the 
number of mortar resources is held at five and compares 
both with goal transformations and without. As problems 
become ever more complex with larger numbers of goals, 
performance degrades more without goal transformations. 

6 Related Work 
Goal-driven autonomy (GDA) agents (a kind of goal 
reasoning agent) generate new goals as the agent encounters 
discrepancies between the agent’s expectations of the 
outcome of its actions and the observed outcomes in the 
state [Aha, et al., 2010; Klenk et al., 2013; Dannenhauer 
and Munoz-Avila, 2015a]. When such a discrepancy occurs, 
GDA agents generate an explanation for the discrepancy 
(e.g., a truck is not moving as expected because it is stuck in 
the mud), and generate a new goal accordingly (e.g., 
unstuck the truck). Goals are not usually transformed other 
than retraction and insertion; new goals are generated, 
possibly replacing the previous goals or to aid achieving 
those goals. To some extent, the work here is more general; 
goal generation or formulation is one possible 
transformation (i.e., goal insertion) out of many changes a 
goal reasoner may select.  

The work here is an extension of the previous effort by 
Cox and Veloso [1998], although a number of differences 
exist. The goal transformations implemented previously 
were for the state-space planner PRODIGY [Veloso et al., 
1995], whereas the current research implents them for the 
hierarchical planner SHOP [Nau et al., 2003] embedded 
within MIDCA. Thus we have shown that the concpet is 
more general than either and placed it firmly within the 
context of goal reasoning. Additionally, the work described 
here is situated within a cognitive architecture, and although 
we explicitly chose to demostrate the same empirical trend, 
we chose a different problem domain (modified blocksworld 
versus air campaign planning), again showing significant 
generality. 

Oversubscription planning [Smith, 2004] addresses the 
problem of generating plans for many goals by choosing a 
subset of goals when all of them cannot be achieved so as to 
assist classical planners which might otherwise fail. This is 
similar to a retraction transformation whereby the system 

Figure 4. Performance without goal transformation 

Figure 3. Performance with goal transformation 

Figure 5. Performance as a function of resource availability  
given 100 goals 

Figure 6.  Performance as a function of problem complexity 
(i.e., number of goals) given 5 resources 



drops particular goals. Goal transformations include this 
type of planning decision and others.  

The roots of our work go back to Michalski’s early 
inferential theory of learning that views the process of 
solving a problem as a series of knowledge transmutations 
[Michalski, 1993], steps taken to modify a body of 
knowledge to attain a solution. It distinguishes between 
generalization and concretion transmutations. 
Generalization transmutations transform specific knowledge 
into more general knowledge. For example, if an agent 
observes truck(a) and color(a,blue) and in the absence of 
other facts about other trucks it might hypothesize that (F1) 
for all ?x truck(?x) ⇒ color(?x, blue) (question marks 
represent variables). 

Concretion is the opposite process whereby general 
knowledge is made more specific. For example, assuming 
F1 is true and if the agent observes truck(a), it will infer 
color(a,blue). In our work, we are using similar ideas, that 
of transmutations applied to desired goals. 

In the context of planning, changing the plan 
representation has been long explored, for example in the 
context of abstraction planning [Knoblock, 1990; Bergmann 
and Wilke, 1995]. Analogous to Michalski’s generalization 
and concretion transmutations, plans can be generalized. For 
example a plan trace move(truck1,locA,locB), 
load(truck1,lockA,obj1) can be abstracted into 
move(?truck,locA,locB), load(?truck,lockA,obj1). 
Concretion transforms the plan in the opposite direction. 
Such generalizations are done with the aim of facilitating 
problem solving. For instance, some generalizations involve 
not only replacing constants for variables but eliminating 
some of the conditions in the problem. A key point in 
abstraction planning is the distinction between 
generalization and abstraction; in the former the planning 
language remains the same (e.g., when replacing constant 
with variables, the actions remain the same). In contrast, in 
abstraction the language itself changes. For example, the 
plan trace move(truck1,locA,locB), load(truck1,lockA,obj1) 
can be replaced by the construct 
moveANDload(truck1,locA,locB,obj1); ”moveANDload” is 
not a name appearing in the concrete domain but a construct 
to reason at higher levels. Generalization and abstraction 
might make the problem easier (i.e., by removing hard 
constraints; such as requiring a special kind of vehicle to 
transport some specific goods). When a plan is solved in the 
generalized or abstracted form, it is transformed into a 
concrete solution. Nevertheless whether abstracted or 
generalized, goals generated still refer to the planning 
domain. In contrast, in our work, transmuted goals at the 
meta-level refer to the process of generating the plan rather 
than the planning domain itself. 

Akin to plan abstraction, work on learning HTNs aims at 
generating hierarchies that subsume plan traces; although 
the aim of HTN learning algorithms is to learn the 
abstractions. Typically, these algorithms use as input some 
additional knowledge such as task semantics defined as 
(preconditions,effects) pairs as in Hogg [2008] or Horn 
clauses as in Nejati [2006] to find sound ways to abstract the 

plan traces. The generated hierarchies represent knowledge 
about the domain unlike in our work where the transformed 
meta-level goals reflect knowledge about the process not the 
domain itself. 

7 Conclusion 
The idea of goal change is a fundamental concept for 

intelligent systems; people change their mind all the time, 
and for good reason. A system that reasons about its goals 
and its ability to achieve them will sometimes have to adapt 
to changing information and changing environments if it is 
to act rationally. Here we have argued that adaptation is not 
always a mattter of plan change, rather sometimes an agent 
will change it goals instead. But deciding whether to change 
the plan or the goal is itself a hard decision not addressed 
here. Instead we have presented a model of goal 
transformations and introduced the concept within the 
MIDCA cognitive architecture, showing the effects on 
performance. A more complete algorithm to select a given 
choice or ones to implement specific transformations are left 
to future research. However, goal transformations need to be 
used conservatively and with caution. Otherwise in all 
instances, the substitution of the current goal set with the 
empty set by a series of retraction transformations can be 
satisfied by the null plan, an unsatisfactory proposition. 
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