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1 Research Problem

As intelligent systems become a regular part of our everyday
lives, robust and safe operation is ever more important. My
research focus is to endow agents with the ability to moni-
tor themselves in order to detect when their behavior has ex-
ceeded their boundaries. Previously, we have explored dif-
ferent forms of expectations for anomaly detection in agents
operating in Real-Time Strategy (RTS) games, as well as dy-
namic domains involving planning and execution. My current
work aims to achieve agents that can reason about and use ex-
pectations in both dynamic and partially observable domains,
as well as investigating meta-cognitive expectations for de-
tecting anomalies in the agent’s own cognitive processes (rea-
soning, planning, etc) instead of anomalies in the world.

2 Goal Driven Autonomy

Goal-driven autonomy (GDA) is an agency model where an
agent revises its goals by reasoning over discrepancies. Dis-
crepancies arise when the agent’s own expectations do not
match the agent’s observations. Such discrepancies arise
when acting in dynamic environments (i.e., changes occur in-
dependently from the agent’s actions). When discrepancies
occur, the GDA agent will suggest alternative goals. An ex-
ample, adapted from [Molineaux et al., 2010], involves an
agent performing navy operations. A naval convoy is in route
to deliver some equipment and along the way an escort vessel
identifies an unknown contact. At this point the agent could
pursue one of multiple alternative goals including (1) abort
the mission and route back the vessels to the departing port
or (2) hold the convoy and send escort vessels to identify the
contact.

Figure 1 shows a GDA situated agent. The core GDA pro-
cess is shown within the controller. After discrepancy detec-
tion identifies an anomaly, the discrepancy d is sent to the
explanation generator which hypothesizes one or more expla-
nations e. These explanations are then used by the goal for-
mulator which may decide to formulate new goals g. Finally
the goal manager selects which goals for the agent to pursue.
An underlying motivation for GDA is that in the face of an
anomaly, it may be better for an agent to change its goal(s)
instead of replanning.

Figure 1: The GDA Cycle

3 Expectations in Real Time Strategy Games
Expectations are central to discrepancy detection, as they are
the knowledge the agent uses to identify when an anomaly is
present, or when the agent has acted outside its boundaries.
The source of expectation knowledge and method of detec-
tion differs depending on the agent and the domain. In the
RTS game Starcraft, we showed that inferred expectations en-
able high level planning to allow an agent to use more com-
plex plans (e.g. coordinating different types of attacks us-
ing multiple groups to attack the enemy) [Dannenhauer and
Muñoz-Avila, 2013a; 2015b].

In many of the top Starcraft playing agents, the focus is on
winning battles as a single army and producing new troops
as efficiently as possible. However, humans are often able
to beat these bots by using more tactical strategies such as
harassing the enemy workers at the base with one group of
units and then attacking the other side of the base with another
group. In order to enable these kinds of explicit higher level
goals, such as “surround the enemy base”, more expressive
expectations are needed. Previous expectations used in RTS
games were based on individual units [Weber et al., 2010;
Jaidee et al., 2012]. In our work the agent can produce an ex-
pectation such as “player0 controls regions 5 and 6” (where



player0 is the agent). This kind of expectation is possible with
the use of rules, such as a description logic rule: “A player
controls a region if there is at least 1 unit in the region and
that player owns every unit in the region.” (Partitioning a map
into polygon shaped regions is possible with the API Brood
War Terrain Analyzer [Perkins, 2010]). The discrepancy de-
tector can identify if this expectation was met by adding the
expectation statement (player X controls region Y) to an on-
tology of facts of the current game state, running it through
a reasoner, and checking consistency. Upon an inconsistency
the reasoner provides an explanation trace of what facts are
conflicting. In this trace would be the DL rule which would
have as its consequent the fact that player X controls region
Y. The trace also shows which antecedents of the rule are in-
consistent, which enables useful explanation.

We have also explored evidence scoring functions to deter-
mine strategies in individual battle scenarios in RTS games
[Dannenhauer and Muñoz-Avila, 2013b].

4 HTN Based Expectations

In more recent work we have examined new techniques
for expectations generated from Hierarchical Task Network
(HTN) planning domain knowledge for agents operating in
dynamic domains [Dannenhauer and Muñoz-Avila, 2015a].
We introduced Informed expectations: expectations that are
the accumulated effects from the planning actions executed
thus far. This approach filters out the atoms in the state that
are irrelevant to the agents current goal, while still maintain-
ing effects that are needed to reach the goal. In that work, we
assumed that enough of the state is known to enable generat-
ing concrete grounded plans (i.e. a complete plan is generated
for the agent’s goals).

We are interested in exploring domains where perception
is limited enough such that it requires the agent to explore its
environment to determine what resources it has available be-
fore being able to achieve its goals. Generating a grounded
plan from the beginning would be impossible, because the
agent would not know where it needs to go or what objects
it will encounter to use to accomplish its goals. For example,
suppose an agent is operating in a domain similar to the Mar-
sworld domain described in [Dannenhauer and Muñoz-Avila,
2015a].

The overall goal of the agent is to create a signal. The agent
must either activate a specified number of beacons, drop and
light a certain number of flares, or create a specified num-
ber of smokefires using piles of wood found nearby. If the
agent has limited perception, then only after it explores the
state will it know if it is better to activate beacons or go about
dropping flares. Thus classical grounded planning is not pos-
sible. In these environments agents would likely have models
for sensing actions and associated costs. We aim to explore
sensing vs. acting as a form of self-monitoring. Additionally,
we are interested in dynamic domains that have significant
changes over time, requiring the agent to adapt in order to
maintain performance.

5 Metacognitive Expectations
Anomalous or failed behavior of an agent may result from
a problem in a cognitive process instead of a world state.
To detect and correct such a problem relies on metacogni-
tive capabilities. Previously we have explored using a cogni-
tive trace that records data from different cognitive processes
(e.g. preception, interpretation, goal selection, planning) and
show preliminary results that enable an agent to swap out it’s
planning faculty for an alternative planner [Cox, 2016]. We
would like to explore metacognition in other cognitive pro-
cesses including but not limited to: goal selection, memory,
and perception.
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