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Abstract
In part motivated by topics such as agency safety, there is an
increasing interest in goal reasoning, a form of agency where
the agents formulate their own goals. One of the crucial as-
pects of goal reasoning agents is their ability to detect if the
execution of their courses of actions meet their own expecta-
tions. We present a taxonomy of different forms of expecta-
tions as used by goal reasoning agents when monitoring their
own execution. We summarize and contrast the current un-
derstanding of how to define and check expectations based
on different knowledge sources used. We also identify gaps
in our understanding of expectations.

Introduction
Over the past few years there has been an increasing interest
in safety for autonomous systems; ensuring that the agent
behaves in the way that was intended (Conn 2017). Part of
the interest on AI safety is the realization that as systems
increase in sophistication they may behave in ways that are
counterproductive towards the agent’s designer’s intent.

Motivated in part by these concerns, there is an increas-
ing interest in goal reasoning, a form of agency where the
system formulates its own goals (Aha 2018). For exam-
ple, agents formulate goals as a reaction to conditions in
the environment where the agent is operating. This can in-
clude anomalies such as unexpected exogenous events that
the agent has not planned for. Cox (1996) presents a taxon-
omy of potential failures an agent might encounter; the tax-
onomy identifies four categories of failures: domain knowl-
edge, goal, processes and environmental. This work focuses
on two of these:
• Environmental. Consider for instance, an autonomous ve-

hicle that is navigating in an environment and the exe-
cution of a move action produces no results because the
vehicle is stuck in mud.

• Domain knowledge. Same example as before, but in this
case the vehicle is not moving due to a mechanical failure,
which causes a mismatch between the action model and
the physical model of the vehicle.
Goal reasoning architectures have been proposed to ad-

dress the problem of (1) identifying the reasons for the
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Table 1: A taxonomy of different notions of expectations.
STRIPS Ontol. HTN Numeric ND

Immediate X X X X X
State X X X X X
Informed X ? X ? X
Regression X ? ? ? X
Goldilocks X ? ? ? X

discrepancy, including generating explicit goals to ascer-
tain the reason for the discrepancy, and (2) take the corre-
sponding actions to deal with this discrepancy (Cox 2007;
Molineaux, Klenk, and Aha 2010a). For instance, the vehi-
cle may self-assess that it is stuck (e.g., by mud), backtrack
to move out of the mud and then replan to continue to its
original destination (e.g., avoiding the mud). The question
of what the agent should expect seems deceivingly simple:
at first glance it would seem sufficient to expect that the ef-
fects of the agent’s most recently executed action matches
the observed changes in the state. As it turns out the answer
to the question of what are the agent’s expectations while
executing its course of action (e.g., a plan) is more complex.
For instance, not every change in the state is relevant for the
current plan and hence merits attention from the agent.

In this paper we present a taxonomy answering this ques-
tion in the context of goal reasoning agents. We present six
forms of expectations from the goal reasoning literature (Ta-
ble 1 lists five of these) and contrasts them with the follow-
ing assumptions about the underlying domain model:

• Actions are defined as (STRIPS) (name, preconditions, ef-
fect) triples.

• Ontological information about the objects in the environ-
ment is provided.

• Hierarchical task network methods are used to generate
the plans.

• Arguments in the actions may be numerical.

• Actions having non-deterministic effects.

We also discuss gaps in the formulation of expectation
for goal reasoning systems that can be the subject of future
research.



Related Work
The study of expectation failures has a long-standing tra-
dition. Mechanisms to enhance a domain description when
planning failures occur have been proposed (e.g., (Birnbaum
et al. 1990; Sussman 1975)). Plan execution monitoring sys-
tems check if the current state satisfies the effects of the ac-
tion just executed and the preconditions of the actions to be
executed next. When this does not happen, a so-called ex-
pectation failure or discrepancy occurs (Cox 2007). Wilkins
(1985) presents possible execution failures including: goals
not achieved and action’s preconditions held to be true at
planning time that are no longer true during execution. In-
terestingly, for some of the failures, the agent will gener-
ate new goals. The agent is built using the highly expressive
SIPE HTN planning and execution system (Wilkins 1988).
Other kinds of failures have been studied where even though
they are not execution failures, the current execution exhibits
conditions that are not desirable (Myers 1999). For instance,
when the execution of the plan doesn’t meet quality con-
siderations, such as execution taking longer than expected
(Fritz and McIlraith 2007).

Some planning systems relax the requirement that the
plan must achieve all of its goals. For example, oversub-
scription planners attempt to satisfy a maximal subset of
the goals instead of all of the goals (Van Den Briel et al.
2004). In goal reasoning, goals might change as a reaction
to changes in the environment. A primary difference from
oversubscription planning vs goal reasoning is that in goal
reasoning agents there is a notion that some goals are com-
mitted and others may be pending. A pending goal indicates
one that is not currently pursued by planning and acting, in-
stead it is a goal the agent may pursue at a later time. The
decision to move a goal between pending or committed is
considered a goal reasoning problem (Roberts et al. 2016).
This is different from oversubscription planning which does
not have a notion of pending goals, only a given set of goals
for which the planner attempts to generate a plan to achieve
a maximal subset. Since goal reasoning may cause a change
in the current goals, it is related to plan repair, which aims
at modifying the current plan when changes in the environ-
ment make actions in the plan invalid (Van Der Krogt and
De Weerdt 2005). The main difference between plan repair
and goal reasoning is that in the latter the goals might change
whereas plan repair sticks with the same goals while search-
ing for alternative plans.

Immediate Expectations
Immediate expectations directly borrow ideas of the plan ex-
ecution monitoring literature (see related work discussion).
Given a domain planning model consisting of a collection
of actions A, where each action a is defined as a (name,
preconditions, effect) triple, a = (namea, prea, eff a), and
plans are generated from A (Fikes and Nilsson 1971). That
is, each ak ∈ A. Suppose that ai in a plan π = (a1...an)
is the next action to be executed. Immediate expectations
check that the effects of the previously executed action ai−1
currently hold in the environment and the preconditions of
ai also currently hold in the environment (Cox 2007).

Player(p1) ∧ Player(p2) ∧DifferentFrom(p1, p2) ∧
Region(r) ∧ hasPresenceIn(p1, r) ∧
hasNoPresenceIn(p2, r)→ ControlledRegion(r)

Figure 1: Inference Rule for ControlledRegion(?r)

If an ontology Ω is available, immediate expectations
can be defined to check if (Ω ∪ si ∪ eff ai−1) (respectively
(Ω∪ s∪ preai)) is consistent, where s is the observed state.
The ontology Ω can be used to define richer preconditions or
effects; conditions that may not be directly observable but
that are inferred to be true by reasoning over the ontology
and the current state. For example, in a real-time strategy
game setting, using an ontology1 we define a richer precon-
dition ControlledRegion(r) to be a region controlled by the
player p1 if p1 has a presence in the region but the other
player p2 has no such a presence (Figure 1). This rule is de-
fined for an ontology of a game-playing agent in a strategy
game where a player manages armies aiming at defeating the
opponent. Rules such as the above are used to plan a strat-
egy. In this case an action can be taken under the precon-
dition that some region is controlled by p1; a discrepancy
will be detected if hasPresenceIn(p2, r) can be inferred
from the current state. When this happens a goal reasoning
process is triggered (Dannenhauer and Munoz-Avila 2013).

In HTN planning, plans are generated by a hierarchical
task decomposition process in which higher level tasks are
recursively decomposed into simpler tasks (Currie and Tate
1991; Erol, Hendler, and Nau 1994).2 The process continues
until so-called primitive tasks are generated. These primi-
tive tasks are defined by actions. Hence, the result of the
HTN planning process is a plan π and immediate expecta-
tions can be defined as before. However, the immediate ex-
pectations concept can be extended to the applicability con-
ditions of each of the tasks decomposed in the echelons of
the hierarchy Hπ that resulted in π. Specifically, in HTN
planning, in addition to the actions, a collection of meth-
odsM is provided. A method m is a (task, preconditions,
subtasks) triple, m = (taskm, prem, subtsm). Examining
Hπ , we can determine for each action ai if it was the first
primitive task resulting from applying a method m decom-
posing a task t ∈ Hπ . Hence, we can check if prem is
valid in the state si when checking if preai is valid. Re-
cursively, we can check if t is the first subtask of another
method m′ decomposing some task t′ ∈ Hπ and then also
check if prem

′
is valid in si. At higher levels in the hierar-

chy, the preconditions will have a higher level of granularity
than in the action level. For example, in our work combining
HTN and ontologies (Dannenhauer and Munoz-Avila 2013;
2015a), the actions check preconditions about units such as

1This ontology is available in OWL format, see Dannenhauer,
West, and Hatalis (2013).

2In the discussions on this paper we focus on Simple Ordered
Task Decomposition as defined for the SHOP 2 HTN planner (Nau
et al. 2003). This is the current dominant variant of HTN planning
used by those goal reasoning systems that are built on top of an
HTN planner.



presence of units in regions whereas some methods have pre-
conditions about the control of a region. This means that in
some situations the expectation of an action a can be satis-
fied in the observed state but the expectations for a method
decomposing one of its ancestor tasks in Ht is not valid.
For instance, the unit might move out of a region because
it has presence but a parent task’s expectations are violated
because the region is no longer controlled by the player.
Thus, an agent checking task’s expectations could react to
violations that an agent checking only actions’ expectations
would not. The anomaly will be detected when checking
expectations of a latter action in π but by that time the
agent would have committed to actions that could have been
avoided.

Numeric conditions can be checked to see if numeric con-
ditions in the actions are valid in the state. For example, in
the minecraft domain, there is an action to build a pickaxe
that requires three stones (Nguyen et al. 2017). It can be
checked directly in the state if the action is applicable.

In nondeterministic (ND) domains, an ND action a is de-
fined as a triple a = (namea, prea, {eff a}) where prea are
the preconditions, {eff a} = {eff a1 . . . eff an } are the possible
effects of the action. ND planners generate a policy π : S →
A, a mapping from the possible states in the world S to ac-
tions A, indicating for any given state s ∈ S, what action
π(s) ∈ A to take (Fu et al. 2011). When executing a policy
π from a starting state, an action trace (π(s0)...π(si−1)) is
generated. For immediate expectations the agent checks that
the conditions of the state match any of the ND effects in
π(si−1)) and check if the preconditions in π(si) are valid
(Reifsnyder and Munoz-Avila 2018).

State Expectations
Some agents propagate forward the state by using the ac-
tion model A enabling the agent to maintain the plan trace,
s0 a1 s1 a2 . . . an sn (Molineaux, Klenk, and Aha 2010a).
That is, the actions in π are annotated with the intermediate
state after executing that action. Each state is a collection of
atoms. The effects eff a of an action a are defined as a pair
(adda, dela) of atom collections, where adda is the add-list
and dela is the delete list. They indicate the resulting state
s′ when a is applied to state s: s′ = apply(s, a) = (s −
dela) ∪ adda. Thus, in the plan trace, si = apply(si−1, ai)
holds. We called these state expectations; they are defined as
the state si generated by the last action ai executed.

A discrepancy occurs if s 6= si, where s is the observed
state. Empirical evaluations have consistently shown an im-
provement in performance defined as the agent satisfying the
goal conditions when the agent terminates execution using
state expectations compared to immediate expectations. Un-
like agents checking immediate expectations, agents check-
ing state expectations guarantee that the goals are satisfied
when the agent reaches a terminal state (and stops its execu-
tion).

State expectations generalize immediate expectations in
the sense that if the state expectation for an action a in a
plan π are valid in a state s then the immediate expectation
of a is valid. But the opposite is not true. For instance, sup-
pose that an agent is tasked with turning on some beacons.

Suppose that the agent turns on a beacon at some action ai
but the beacon is turned off by some opponent agent after-
wards. An agent checking state expectations will discover
this. In contrast, an agent checking action expectations will
not detect this anomaly.

State expectations are perhaps the most frequently used
in the goal reasoning literature. For instance, in the intro-
ductory articles of goal-driven autonomy, a form of goal
reasoning, the expectations defined are state expectations
(Klenk, Molineaux, and Aha 2013). Other goal reasoning
systems frequently use state expectations as well. For ex-
ample, (Pozanco, Yolanda, and Borrajo 2018) project the
goal states that can be reached by an opponent and formulate
goals to impede the opponent from reaching those states.

If an ontology Ω is available, state expectations can be
checked by inferring if (Ω∪ s∪ si) is consistent, where s is
the observed state and si is the expected state (Dannenhauer
and Munoz-Avila 2013). The difference versus the corre-
sponding case for immediate expectations is that the agent
checks consistency on the projected state si as opposed to
the effects eff ai−1 or the preconditions preai in immediate
expectations.

For HTN planning, the intermediate states can be prop-
agated upwards into echelons of the hierarchy Hπ that re-
sulted in π (Dannenhauer and Munoz-Avila 2015b). Specifi-
cally, ai if it is the last primitive task resulting from applying
a method m decomposing a task t ∈ Hπ . Then we define
the state expectation of t to be si. Analogously, we can de-
fine the state expectation for a task t′ ∈ Hπ if t is the last
subtask in the method decomposing t′. Unlike with immedi-
ate expectations, for state expectations there is no benefit of
checking (non primitive) tasks’ expectations since they are
identical to state expectations in actions in π.

For states with numeric information, bounded expecta-
tions have been defined, which is a form of state expec-
tations as the state is carried over (Karneeb et al. 2016;
Floyd et al. 2017; Wilson, McMahon, and Aha 2014). They
project forward the expected numerical values: for example,
if an action consumes f(d) gasoline for a numeric value d
having a distance between locations, then the current fuel
level v will be decreased to v− f(d). These agents maintain
an interval [l, u] by projecting it forward: [l−f(d), u−f(d)].
A discrepancy occurs if the observed value in the state is out
of the expected bounds.

For ND domains, where as explained before plan-
ners generate policies π : S → A, the state expecta-
tion is computed by keeping track of the action trace,
s0 π(s0) s1 π(s1) . . . π(sn) sn+1, resulting from execut-
ing π from state s0 (Reifsnyder and Munoz-Avila 2018).

Informed Expectations
Informed expectations accumulate forward the effects
∅ a1 eff1 a2 . . . an effn, where effi = apply(effi−1, ai)
holds (Dannenhauer, Munoz-Avila, and Cox 2016). The dif-
ference versus state expectations is that it maintains the ac-
cumulated effects (removing those deleted by actions in the
trace) as opposed to state expectations that project forward
the starting state s0. In particular the state expectation of a1
is s1 = apply(s0, a1) whereas the informed expectation of



a1 is eff1 = posa1 . Thus, if the state expectation for an ac-
tion ai are met in the observed state s, then the informed
expectation for ai are also met; but the other way around is
not true.

Like state expectations, informed expectations guarantee
that the goals are reached when the agent reaches a termi-
nal state (unless the goal was already achieved in the start-
ing state). However, state expectations may trigger unnec-
essary replanning and/or goal reasoning processes. For in-
stance, when navigating in the environment the agent may
encounter unexpected mud resulting in a discrepancy. How-
ever, if the mud is not along the trajectory of the agent, there
is no need to change its course of action. In addition, if
sensing the environment has associated costs, then check-
ing for state expectations will have larger costs compared
to informed expectations as the latter is a subset of the for-
mer. Indeed in empirical evaluations agents checking for in-
formed expectations incurred less sensing costs than those
checking state expectations while satisfying all the goals in
the terminal states.

We know of no work performing informed expectations
given an ontology Ω. Presumably the expectation for action
ai could be defined as (Ω∪s∪effi) (i.e., a discrepancy occurs
if this set is inconsistent).

Like with state expectations, it suffices to compute in-
formed expectations on ai; if ai is the last primitive task
resulting from applying a method m decomposing a task
t ∈ Hπ , then the informed expectations of i are the same as
the informed expectations of ai (Dannenhauer and Munoz-
Avila 2015b). We don’t know of work performing informed
expectations on numeric values and how to define these is
unclear. Unlike state expectations where a variable will have
a numeric value in s0 and this can be propagated forward
based on the action definitions (e.g., reducing the fuel level
when gasoline is consumed), in informed expectations, as
defined, the values of s0 are not taken into account; only the
projected changes. With list of atoms with symbolic values
(i.e., when using the state-variable action representation) it is
simple to project values forward by adding/removing atoms
or keeping track of the newly assigned symbolic values. But
when the values are numeric. it is not clear what to project
forward.

For ND domains, when applying an action ai we know
what are its potential effects {eff ai} = {eff ai1 . . . eff ain }
so we can check against the current state which effaik of
these hold (otherwise a discrepancy is detected). Thus, the
informed expectations are maintained by accumulating ef-
fects of the action trace generated so far when following
policy π from s0: ∅ π(s0) eff1 π(s1) . . . π(sn) effn and
effi = apply(effi−1, eff aik ), where eff aik are the ND effects
of ai that hold in the environment (Reifsnyder and Munoz-
Avila 2018).

Goal Regression Expectations
The use of goal regression has been investigated to deter-
mine the weakest preconditions needed to execute a plan and
use these to compute similarity between plans in case-based
planning (Veloso and Carbonell 1993). Goal regression has
also been used to avoid unnecessary replanning in the con-

text of optimal planning (Fritz and McIlraith 2007). Goal
regression expectations borrow directly from these works.

Given a plan π = (a1...an) achieving g, a collection of
atoms, the goal regression expectation of an action ai ∈ π is
its regress condition on (reg0 a1 reg1...regn−1 an regn),
such that regi−1 = regression(ai, regi) = (regi −
addai) ∪ preai and regn = g.

If the regression expectations regi−1 for action ai are met
in the observed state then the remaining actions πi = ai...an
in π are executable. Furthermore, regi−1 is the smallest set
of conditions that must be satisfied in the environment to
guarantee the execution of πi; that is, if we remove an atom
from regi−1, the preconditions preaj of an action in πi will
not be applicable or a goal condition will not be achieved.
Goal regression is a powerful form of expectations when the
goals are known and a plan achieving those goals has been
generated a priori. This might not be the case for agents
interleaving planning and execution. Another possibility is
when the plans are generated using HTN planning. In that
case, tasks, not goals are given as input. If the tasks have not
been defined in terms of goals, then it is not possible to as-
certain which conditions in the final state sn are the desired
conditions satisfying the tasks. In such cases informed ex-
pectations can be used checking that the portion of the plan
executed so far meet the expected accumulated goals (Dan-
nenhauer and Munoz-Avila 2015b).

We know of no work performing regression expectations
given an ontology Ω. A possible definition for the regression
expectation for action ai could be defined as (Ω∪ s∪ regi),
where s is the observed state. That is, a discrepancy occurs if
this set is inconsistent. We also know of no work on goal rea-
soning involving goal regression of numerical values. Pre-
diction techniques such as the ones used for machine learn-
ing regression might be of use here since these techniques
predict future numerical values.

We also don’t know of work defining goal regression ex-
pectations for goal reasoning agents using HTN planning.
The primary obstacle is that in HTN planning, tasks do
not have explicit semantics other than the methods that de-
compose them. While one could regress the conditions over
tasks in Hπ using the preconditions of the methods, meth-
ods don’t have effects. If only preconditions are propagated
backwards, without effects, it will lead to inflated regression
expectations on the tasks: a discrepancy may be detected for
tasks’ regression expectations, but no such discrepancy ex-
ists for the regression expectations of the actual actions in
the plan π. Therefore, it may trigger unnecessarily a goal
reasoning process, trying to formulate new goals, for anoma-
lies that do not actually exists. The problem of determining
if no new goals need to be formulated when a discrepancy
is detected is an open problem in goal reasoning research
(Sravya Kondrakunta and Cox 2018). Goal regression has
been defined for tasks when learning HTN planning knowl-
edge in (Hogg, Muñoz-Avila, and Kuter 2008), but in that
work tasks are defined as (preconditions,effects) pairs as pro-
posed in (Murdock 2001).

Goal regression over nondeterministic domains pose an
interesting challenge since (1) there might be multiple paths
in a policy π that yield a terminal state and (2) there might



be multiple terminal states. (Reifsnyder and Munoz-Avila
2018) provides a definition. We avoid the details but there
are three basic cases:

• If the state is a terminal node then the regressed expecta-
tions for that state is g, the collection of achieved goals.

• Suppose that in a state s, when applying the action π(s) it
yields a single state s′ and we have inductively defined its
regression expectation, regs′ . In that case the regression
expectation for s′ is computed exactly as in the determin-
istic case.

• Suppose that in a state s, when applying the action π(s)
indicated by the policy, it can yield two different states s′
and s′′. Suppose that, inductively, we have defined their
regression expectations regs′ and regs′′ . Suppose that
there is an atom α that occurs at both regs′ and regs′′ and
another atom β that occurs in regs′ but not regs′′ . In this
case, and assuming α is not added by an effect of π(s),
then (α, 1.0) ∈ regs′ . The 1.0 signifies that that there is
a 100% likelihood that α is required after applying π(s).
Again assuming β is not added by an effect of π(s), then
(β, 0.5) ∈ regs. The 0.5 signifies that there is a likely
hood of 50% that β is required. A discrepancy is detected
if an atom having at least 50% likelihood in the regressed
expectations is not matched in the state. This means, as-
suming an equiprobable distribution of the ND action’s
effects that there is at least 50% chance that the execution
of the policy will fail after executing π(s).

In the conditions above we informally defined the re-
gressed expectations for a state s; the regressed expectation
for an action π(s) is the regressed expectation for s.

Goldilocks Expectations
Goldilocks expectations combine informed and goal regres-
sion expectations. They are designed for situations when the
plan π is known but the goals satisfied by π are not known
(Reifsnyder and Munoz-Avila 2018). As explained in the
previous section, plans generated with HTN planning are
an example of such situations. Goldilocks expectations are
computed in two steps:

1. The informed expectations are computed as discussed
before; namely, the effects are accumulated over π:
∅ a1 eff1 a2 . . . an effn, where each effi =
apply(effi−1, ai).

2. Goal regression is performed but instead of re-
gressing from the goals g, we regress from the
informed expectations of an, effn, as follows:
(gold0 a1 gold1...goldn−1 an goldn), where
goldn = effn and goldi−1 = regression(ai, goldi).

When Goldilocks expectations are satisfied in ai then the
remaining of the plan πi is satisfied. They are a superset of
the regression expectations.

We don’t know of goal reasoning agents combining
Goldilocks expectations and ontologies. Although it is pos-
sible that given an ontology Ω, to define the Goldilocks ex-
pectations of action ai as (Ω ∪ s ∪ goldi−1) where s is the

Figure 2: A graph representation Gπ of a policy π. s0 is
the starting state. s1 is the only terminal state. The ver-
tices are the states s0, .., s3 and their corresponding actions
π(s0), .., π(s3). An example of an edge is: (π(s0), s2)

observed state. We also don’t know of any work combining
Goldilocks expectations with numeric variables.

We also don’t know of any work defining Goldilocks ex-
pectations for HTNs. While, we can compute informed ex-
pectations for any task t ∈ Hπ as discussed earlier. The issue
remains on how to do regression unless either we ignore the
fact that tasks have no effects or we assume the effects of the
tasks are given.

Defining Goldilocks expectations for policies requires to
extend the notion of informed expectations. Previously, we
defined informed expectations by projecting forward the ac-
cumulated effects over the trace resulting from executing the
policy π from s0. For computing the informed expectations
of a policy π, the policy π is viewed as a graphGπ , where the
states and actions in π are the vertices and transitions from
states to actions and from actions to states are the edges.
Figure 2 shows an example. Then, the following steps are
performed:

1. Classical depth-first search (DFS), with s0 as the source,
is used to transform Gπ into a tree Tπ (called the search
tree in the terminology of DFS search). Tπ is annotated
with the edges in Gπ that are not explicitly represented in
Tπ (Cormen et al. 2001).

2. All paths in Tπ from s0 to leaves, taking into account the
annotated edges, are computed. Each leaf in Tπ is a ter-
minal state in π.

3. Informed expectations are computed on each path com-
puted in Step 2.

These steps result in the leaves of Tπ annotated with the
informed expectations. The same procedure described be-
fore to compute goal regression on the policies is used to
compute goal regression on Tπ , which are defined as the
Goldilocks expectations for Tπ . So regression is performed
in the informed expectations of the leaf vertices. Since every
action in π may occur more than once, the Goldilocks ex-
pectation for each action a in π is defined as the Goldilocks
expectation for the first time a appears in Tπ during the DFS
search procedure. This is done so that it regresses the most
preconditions compared to other (later) occurences of a.



Expectation Header:
EXM

D→E : EXM (sMi , Explanation, s
M
i+1)

Informal Description: When the agent encounters a
discrepancy, then the agent will generate an explanation for
this discrepancy

Formal Description: If vdiscrepancies 6= ∅ in sMi and
vexplanations 6= ∅ in sMi+1, return true, otherwise return false.

Figure 3: Metacognitive Expectation Definition for the Ex-
planation Mental Action

Metacognitive Expectations

The expectations we have discussed thus far are concerned
with the external environment in which the agent is operat-
ing (Table 1). However in certain situations, failure may lie
within an agent’s own cognitive processes rather than in the
external environment. For example, consider an agent oper-
ating in an environment where the model of one of its actions
has a wrong effect (i.e. a self-driving car has a mechanical
problem causing it to stop much sooner than expected when
applying the brakes). While the behavior could be detected
as a discrepancy in world states, how does the agent know
that the root problem is that its model is incorrect?

Dannenhauer, Cox, and Munoz-Avila (2018) introduce
metacognitive expectations that can be used to detect dis-
crepancies on the agent’s own cognitive processes. To do
this, cognitive processes (i.e. planning, goal selection, ex-
planation, discrepancy detection, etc) are treated as men-
tal actions that transform the agent’s current mental state.
Mental states are essentially snapshots of the agent’s current
knowledge and memory. Metacognitive expectations are run
at the meta-level that is constantly monitoring the cognitive
processes. One of the metacognitive expectations demon-
strated in that work is shown in Figure 3. This metacog-
nitive expectation is domain independent since it only re-
quires obtaining abstract notions of the agents previous and
post mental states. The first requirement is that the agent
has identified some discrepancies in the world; shown as
vdiscrepancies 6= ∅ in sMi , where sMi is the mental state be-
fore the mental action of explanation was processed. The
second requirement is that the mental state after the explana-
tion cognitive step has generated some explanation; shown
as vexplanations 6= ∅ in sMi+1 where sMi+1 is the mental state
after the explanation step.

In the example of the autonomous car operating with a
mechanical failure, the agent would identify the discrep-
ancy but be unable to explain it. The lack of explanation
is detected via the metacognitive expectations which then
triggers diagnostic and remedial processes to update the
agent’s model of the world. The metacognitive expectations
are powerful knowledge artifacts that are domain indepen-
dent, however they currently must be supplied by a human
expert. An important area of future work is how an agent
might learn for itself when cognitive behavior is anomalous.

Summary and Future Work
In this paper we described 6 forms of expectations from the
goal reasoning literature and discuss them based on five dif-
ferent knowledge sources. Here are some highlights:

• Immediate expectations do not guarantee that the agent’s
goals are fulfilled when the agent’s execution terminates.

• In contrast, state, goal regression, informed and
Goldilocks expectations guarantee that goals are
fulfilled.

• From these four, goal regression performs the least sens-
ing, checking if every atom is valid in the environment.
State performs the most sensing. Informed and Goldilocks
are in between these two. This means that all but goal re-
gression may flag some discrepancies that won’t interfere
with the current plan’s execution.

• Informed expectations can be used in situations where ei-
ther the goals or a complete plan/policy is not known.

• Goldilocks expectations can be used when the plan or pol-
icy are known but not the goals.

• Cognitive expectations reason about the cognitive pro-
cesses internal to the agent when acting in the environ-
ment as opposed the other forms of expectations which
reason about the (external) environment.

In addition to the various entries with question marks in
Table 1, there are a number of possible research directions:
so far expectations described in this paper have neither been
defined for plans with continuous actions (Coles et al. 2012;
Molineaux, Klenk, and Aha 2010b) nor for situations where
the execution of concurrent actions are allowed. So, for ex-
ample, it is unclear how to define goal regression expecta-
tions for an action a in a plan or policy when a is expected to
cool down an engine for 5 minutes and within the last minute
of this cool down period another action to start removing a
clamp holding the engine must begin its execution. Another
layer of complexity is in partially observable environments.
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