
Abstract
Cognitive agents operating in complex and dynamic domains
benefit from significant goal management. Operations on
goals include formulation, selection, change, monitoring and
delegation in addition to goal achievement. Here we model
these operations as transformations on goals. An agent may
observe events that affect the agent’s ability to achieve its
goals. Hence goal transformations allow unachievable goals to
be converted into similar achievable goals. This paper exam-
ines an implementation of goal change within a cognitive ar-
chitecture. We introduce goal transformation at the metacog-
nitive level as well as goal transformation in an automated
planner and discuss the costs and benefits of each approach.
We evaluate goal change in the MIDCA architecture using a
resource-restricted planning domain, demonstrating a perfor-
mance benefit due to goal operations.

Introduction
Recent work on goal reasoning (Aha, et al., 2013; Hawes,
2011) has started to examine how intelligent agents can
reason about and generate their own goals instead of always
depending upon a human user directly. Broadly construed,
the topic concerns complex systems that self-manage their
desired goal states (Vattam, et al., 2013). In the decision-
making process, goals are not simply given as input from a
human, rather they constitute representations that the system
itself formulates, changes, and achieves. Here we examine
the idea that goal reasoning constitutes a series of
fundamental operations on goals that focus cognition on what
is important for performance.

When the world changes during planning or during
execution (in the real world, a clear chronological line
between the two is not always present), goals may become
obsolete. For example, it makes little sense to pursue the goal
of securing a town center if the battlefield has shifted to an
adjacent location. At such a point, a robust agent must be able
to alter the goal minimally to compensate; otherwise, a
correct plan to secure the old location will not be useful at
execution time. We view a goal transformation to be a
movement in a goal space and in this paper show how such

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

procedures can be incorporated into various mechanisms of a
cognitive architecture.

The rest of this paper is organized as follows. Section 2
introduces the concept of goal operations and formalizes the
notion of goal transformation to subsume such operations.
Section 3 describes the MIDCA cognitive architecture within
which we have implemented such transformations. Section 4
discusses the differences in goal transformation mechanisms
(i.e., at the planning level or the metacognitive level). Section
5 presents experiments and discusses the results. Related
work is discussed in Section 6, and we conclude in Section 7.

Goal Operations
Work by Roberts and colleagues suggests that agents per-
forming goal reasoning transition sets of goals through a se-
ries of modes in a goal life cycle (Johnson, et al. 2016; Rob-
erts et al., 2015). To transition between two modes in the
cycle, an agent executes a cognitive strategy. For example,
a goal may be selected from among a set of pending goals
to become the currently active goal using some selection
strategy. Many of these transitions correspond to what we
conceive of as goal operations as opposed to planning oper-
ations. A goal selection strategy is an example of the former;
whereas an expansion strategy moving a goal from a com-
mitted to expanded mode represents a planning operation
that creates a plan for the goal.
 Our taxonomy of goal operations includes the following.

Goal formulation – create a new pending goal
Goal selection – choose an active goal from pending
Goal change – change a goal to a similar one
Goal monitoring – watch that a goal is still useful
Goal delegation – give a goal to another agent
Goal achievement – execute action to attain a goal state

Early work by Cox and Veloso (1998) a r g u e s that
goals can exist in an abstraction hierarchy whereby some
goals specify desired state predicates that are more general
than others. The concept introduced in their work is that an
important strategy for re-planning in dynamic environ-
ments is to shift goals along this hierarchy and other goal
spaces. Such movement is cal led a goal transformation.

Goal Operations for Cognitive Systems

Wright State Research Institute
Beavercreek, OH 45431
michael.cox@wright.edu

Lehigh University
Bethlehem, PA 18015
dtd212@lehigh.edu

Wright State University
Dayton, OH 45435

kondrakunta.2@wright.edu

Michael T. Cox, Dustin Dannenhauer, Sravya Kondrakunta

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

4385

We cla im tha t e ach goal operation can be thought of as
a kind of transformation. In this paper we will show how
both goal formulation and change are represented with a for-
mal notation of goal transformations, and we will situate
these operations within an implemented cognitive architec-
ture.

Planning Formalism
A classical planning domain is defined (Ghallab, et al., 2004)
as a finite state-transition system in which each state

 is a finite set of ground atoms. A planning
operator is a triple o = (head(o), pre(o), eff(o)), where pre(o)
and eff(o) are preconditions and effects. Each action,
is a ground instance of some operator o. An action is
executable in a state s if s pre().

For a classical planning domain, the state-transition system
is a tuple , where is the set of all states, and
is the set of all actions as above. In addition, gamma is a state
transition function that returns a resulting state
of an executed action given a current state, i.e., .

A classical planning problem is a triple ,
where is a state transition system, is the initial state, and

 (the goal formula) is a conjunction of first-order literals. A
goal state satisfies a goal if . A plan represents a
sequence of plan steps that incrementally
changes the state. Here we will use a notation that enables
indexing of the individual steps or sub-sequences within the
plan. In equation 1 we use the subscript to indicate a plan
that achieves a specific goal. A plan is composed of the first
action followed by the rest of the plan .

 (1)

Now we recursively redefine gamma as mapping either
single actions or plans to states. Hence is a solution for
if it is executable in and . Recursively from
the initial state, execution of the plan results in the goal state
(see equation 2).

 (2)

Interpretation and Goal Transformation
Goal reasoning has recently extended the classical formula-
tion by relaxing the assumption that the goal is always given
by an external user (Cox, 2007; see also Ghallab, et al.,
2014). Although the planning process may start with an ex-
ogenous goal, a dynamic environment may present unex-
pected events with which the system must contend. In re-
sponse, a goal reasoner generates new goals at execution time
as situations warrant. Furthermore, goals themselves may
change over time as an adaptive response to a dynamic world.

More formally, the function returns a (possi-
bly new) goal given some state and a current goal . Here
we posit a simple model of goal change

that represents the set of potential operations or transfor-
mations on goals an agent may select. A goal transformation
is a tuple = (head(), parameter(), pre(), res()), where
pre() and res() are ’s preconditions and result. Then given
 and , the agent makes a decision that results

in output . As such, β represents a
state interpretation process that perceives the world with re-
spect to its goals, managing them as necessary.

Goals are dynamic and subject to change. But there exists
an element of , the identity transformation for
all , i.e., the tuple , which rep-
resents the decision not to change given , i.e., the agent’s
selection of for . Further, goals can be created or formu-
lated given any state, including the initial state , and a goal
state, including the empty state . This is represented by the
goal insertion transformation . This distinguished
operation has been a particular focus of the goal reasoning
community (see Klenk et al., 2013). Given that it relaxes the
assumption that goals are necessarily provided by a human,
this significantly differs from classical planning. Further as
shown by the specification of β in Table 1, insertion is treated
differently than others (see Cox, 2016, regarding).

Assuming an agent’s goal agenda
containing the current goal , Table 1 shows the details of
β. The function (1) uses choose to select a sequence of goal
operations to apply; (2) alters the goal agenda; and (3) returns
a (possibly) new or changed goal. Section 4 will present a
simple example of an application of these functions we im-
plemented for the empirical results shown subsequently.

Model of Planning, Acting, and Interpretation
A plan to achieve a goal can now be represented as

. Using this notation, we combine plans, action (plan
execution), and interpretation as in equation 3 (Cox, 2016).

(3)

However when goals change (or new ones are added) due
to , plans may need to change as well. Thus, the goal rea-
soner may need to re-plan and thereby alter the length and
composition of the remainder of the plan. To cover this con-
tingency, we define a (re)planning function phi that takes as
input a state, goal, and current plan as in expression 4.

Note that in the general case may or may not be equal
to . Inserting φ into equation 3 in place of , we obtain equa-
tion 5 below. The formalism is general across different vari-
ations of goal reasoning and (re)planning.

 (5)

4386

Table 1. Beta and Choose. Although is an ordered set, is a
sequence where is treated like the set operator ∈ and “–“ like
set difference. Reverse maintains the order of (choose inverts it).

:

if
 if then // insertion only

 else = - // insertion plus others

 ()
else // no insertion

MIDCA: The Metacognitive Integrated
Dual-Cycle Architecture

The Metacognitive Integrated Dual-Cycle Architecture
(MIDCA) (Cox et al., 2016; Paisner, et al., 2013) is an agent
architecture that has both cognitive and metacognitive
capabilities. Figure 1 shows the two reasoning cycles. The
cognitive cycle directly reasons about and interacts with the
world through the following phases. Perceive receives
environmental input (noise + ѱ Ѱ), and Interpret processes
the input, noting any anomalies or opportunities and
generating new goals (i.e., the goal insertion transformation,

,)). Interpret partially corresponds to the function
β. Evaluate checks to see which goals the agent is pursuing
are still relevant. Intend chooses which goal the agent
should be currently pursuing from the goal agenda . As such
it implements a goal selection operation. Plan generates a
plan to achieve the agent’s current goals, and it
corresponds to the function φ of expression 4. Finally, the Act
phase executes the next action in the agent’s current plan, and
it corresponds to the function of equation 2.

Much like the cognitive cycle, the metacognitive cycle
(abstractly represented at the top of Figure 1) goes through
cyclical phases. Computationally the primary difference
between the metacognitive and cognitive cycles is the source
of perception and the locus of actions. The metacognitive
cycle introspectively monitors and applies executive control
to the cognitive layer instead of the environment.

Instead of perceiving environmental input, a metacognitive
Monitor phase assembles a trace representation of the
cognitive phases. The trace, τ, is then processed via
metacognition in a manner similar to the cognitive layer. A
metacognitive Interpret phase introspects upon τ and notes
any anomalies or opportunities introducing new meta-goals
as necessary. A meta-level Evaluate phase updates the

agent’s current meta-goals, ensuring they are still applicable.
A metacognitive Intend phase chooses a meta-goal to pursue
and then generates a plan to achieve that goal. Finally, like
the cognitive Act phase, the the next action in the meta-level
plan will be executed by a metacognitive Control phase (e.g.,
change the goal at the cognitive level,).

Goal Transformations in MIDCA
Goal change is required in at least two cases: (i) when the
agent senses a change in the environment that dictates an
adjustment either during the planning process or during the
execution of plan steps; and (ii) when the planner cannot
solve the current problem because of a lack of known
resources. In this paper, we focus on the second case. The
agent is presented with a situation where resources needed to
achieve an original goal become unavailable. Within the
cognitive architecture there are at least two distinct places to
perform goal transformation: (1) within the planning system
of the Plan phase of the cognitive layer and (2) within the
metacognitive reasoning component.

For example, consider the generalization transformation.
Here, we use a specific transformation that operates on
goals representing predicate relations between objects of type

 (see Table 2). If goal change occurs during
metacognitive reasoning, the state comes from the cognitive
trace τ; otherwise, access to is direct.

Now assuming operations , an agent
may start with the goal to achieve a stable tower of blocks,
i.e., , etc. But given an unexpected lack
of mortar resources (e.g., another agent may have recently
used them), the agent might change the goal during execution
(i.e., at action in , where) to a less durable
tower (i.e.,) where is the parent of

 within a class hierarchy. We then represent an
application of the goal generalization in the
expression .

Figure 1. Schematic of the MIDCA Architecture
(adapted from Paisner, et al., 2013)

Executive Metacognition

World =

Memory
Mission &
Goals()

World Model ()

Episodic Memory

Semantic Memory
& Ontology

Plans() &
Percepts ()

goal change goal input
goal

insertion

Intend

Act
(& Speak)

Plan

Evaluate

Perceive
(& Listen)

Interpret

Goals

subgoal

Task

Actions Percepts

Hypotheses

4387

Table 2. Goal generalization and its inverse, goal specialization.
Bergmann (2002) provides a notation for class hiearchy having
leaf classes and whose root class has superclass , i.e.,

. Precondition of both transformations
assures that a parent or child class exists. State in is
within the scope of choose from Table 1.

pre) = { , }

pre) = { , }

Cognitive Level Goal Transformations
Goal transformations can be implemented within a
hierarchical task network (HTN) planner’s methods. HTN
planning is a powerful planning paradigm because of its
incorporation of domain knowledge into methods, which
guide the plan generation. Assuming goal transformations of
the domain are known by the domain engineer, this
knowledge can be incorporated into the HTN methods. For
example, an extra precondition can be added to the method
that checks the state for an available resource. If the resource
is available, the method will guide the search in one direction
utilizing that resource. If it is unavailable, it will guide the
search in another direction (one that may be less desireable
but uses no resources). In this way, various goal
transformations can be performed during plan generation.
This approach contains all of the goal transformation
knowledge within the planner. The costs of this approach are
the extra knowledge burden and the encoding of it into the
HTN methods. The benefit is a self-contained goal-
transformation enabled planner that can perform goal
transformations during plan generation. This allows a goal
change to occur without any additional cognitive cycles.

Metalevel Goal Transformations
Alternatively, goal transformation can occur at the metalevel.
No goal transformation knowledge needs to be encoded in the
HTN methods. Instead, in the example where a resource is
not available yielding the current goal as unachievable, the
planner would notify the metacognitive reasoner. For
example, the planner could fail to produce a plan (or log a

warning) in the cognitive trace (i.e., input to metalevel; see
Figure 2). The metacognitive layer would perceive the
warning or failure to produce a plan and begin its reasoning
mechanism. As a result, the metalevel could transform the
previous goal into a new goal that did not require the resource
and perform a goal retraction followed by insertion. During
the next cognitive Intend phase, the cognitive layer will then
choose to pursue the recently inserted goal.

 Figure 2 shows the last two phases of the trace when the
cognitive Plan phase fails to produce a plan for the goal to
achieve a stable tower. The goal for a stable tower is encoded
as .
Predicate stableOn is similar to on with the additional
requirement that a piece of mortar is used to cement the
blocks into place. In this example, only one piece of mortar
is available instead of the needed three (one for each
stableOn). The cognitive level Plan phase will attempt to plan
for the stable tower goal and fail. Figure 2 shows the segment
of the trace used to identify the failure of the cognitive Plan
phase (and thus trigger metacognitive reasoning). In the trace
(τ) segment we see the results of Intend and Plan phases (this
is part of the whole trace produced from every phase executed
thus far in MIDCA’s execution). The trace segment for
Intend records as input the pending goals () and
selected goals (). Here we see PG contains the goal
atoms for the stable tower. Intend, the phase with the primary
purpose of selecting which goals to commit to, moves these
three goal atoms to SG as its output. At this point, everything
at the cognitive level is proceeding as expected.

The next phase, Plan, is tasked with using the newly
selected goals along with the current world state (WORLD ≈
Ѱ) to produce a plan. At the current time in MIDCA’s
execution, the world state contains only a single piece of
mortar, not enough for all three of the stableOn goal atoms.
Once the Plan phase finishes and the trace output showing no
plan is recorded, the metacognitive Monitor phase retrieves
the trace segment and the metacognitive Interpret notes an
anomaly: the cognitive level Plan phase produced no plan.

Figure 2. Trace τ of cognitive activity

4388

The expectation used to detect this anomaly is that the Plan
phase should produce a non-empty plan that achieves the
selected goals (given a mental domain model of operators for
each phase, this kind of expectation would fall under the
immediate type of expectations categorized in (Dannenhauer
and Munoz-Avila 2015b). We use expert authored
expectations here and leave a mental domain model and
resulting expectations for future work). The metacognitive
Intend phase also inserts a new meta-goal which is to have an
achievable goal at the cognitive level.

Specifically, let the cognitive goal be
 and

the meta-goal be . Next, the
metacognitive Intend phase commits to . The
metacognitive Plan phase produces an action plan
consisting of the single action .
Finally, the meta-level Control phase executes (which
uses the goal transformation) and yields the modified
goal . The
goal is updated in MIDCA’s memory and metareasoning
finishes. Finally cognitive reasoning continues. The
following Intend phase will select , and the Plan phase
produces a non-empty plan.

The cost of the metalevel approach is the requirement for
more computation. The cognitive level Plan phase must first
fail (or issue a warning) before the metalevel performs the
goal change operation. Then the cognitive layer can continue,
and the next Intend phase will select the new goal. The
benefits of this approach are a planner-independent
mechanism for goal change and a declarative representation
of change that enables reasoning about such operations.

Computational Experiments
We evaluated MIDCA’s goal transformation in a modified
blocks world domain. The blocks world is a well known
planning domain where an agent is tasked with arranging
blocks on a table. The actions available to the agent are
pickup from and putdown on the table, unstack, and stack.
The modification we introduced is a resource called mortar
that allows the agent to build sturdier towers, and thus
achieve more points for those towers. Specifically, for every
two blocks adjoined with mortar the agent receives an extra
point. Each block in the tower is also worth one point. New
operators are introduced that allow blocks to be stacked using
mortar, in addition to the operators to stack without mortar.
The former achieves the goal of stableOn(A,B); whereas the
latter achieves on(A,B). The change from the fomer to the
latter is an example of the generalization transformation.

There is always a finite amount of mortar. If there is not
enough mortar to stack blocks, the agent will need to change
the goal and resort to stacking without mortar and reduced
points rewarded for that tower. This requires a transformation
of the goal, because the original goal is always to build
sturdy, mortar towers. We ran experiments varying the
number of resources (i.e., mortar) and the number of goals. If
the agent did not have enough mortar, the solid-tower goals
could not be achieved, and without a transformation of the
goal, the agent would gain no reward.

Empirical Results
We collected data from 260 instances of MIDCA varying
resources and number of goals. Figure 3 shows the results of
MIDCA using a goal transformation strategy; whereas Figure
4 shows the results with fixed, static goals (i.e., no goal
change). The y-axis is the percentage of the maximum score
the agent was able to achieve (i.e. the maximum score is the
score received in the case all towers use mortar). By
comparing the graphs, it is clear that when the number of
resources is sufficient for the complexity of the problem, both
graphs show equivalent performance. But when resources
relative to the number of goals are scarce, MIDCA is able to
achieve a higher score by changing goals. In Figure 4, one
side of the graph drops to zero under resource limitations. By
changing goals appropriately, MIDCA is able to achieve a
higher performance score in Figure 3.

Related Work
Goal-driven autonomy (GDA) agents (a kind of goal
reasoning agent) generate new goals as the agent encounters
discrepancies between the agent’s expectations of the

Figure 4. Performance without goal transformation

Figure 3. Performance with goal transformation

4389

outcome of its actions and the observed outcomes in the state
(Aha, et al., 2010; Cox, 2013; Klenk et al., 2013;
Dannenhauer and Munoz-Avila, 2015a). When such a
discrepancy occurs, GDA agents generate an explanation for
the discrepancy (e.g., a truck is not moving as expected
because it is stuck in the mud), and generate a new goal
accordingly (e.g., unstuck truck). Goals are not usually
transformed other than retraction and insertion; new goals are
generated, possibly replacing the previous goals or to aid
achieving those goals. To some extent, the work here is more
general; goal generation or formulation is one possible
operation of the taxonomy described in the introduction; a
goal reasoner may perform any of these operations.

The work here is related to the previous effort by Cox and
Veloso (1998), although a number of differences exist. The
goal operations implemented in their work (referred to as
transformations) were for the state-space planner PRODIGY
(Veloso et al., 1995), whereas our work implements them for
the hierarchical planner SHOP (Nau et al., 2003) embedded
within MIDCA. Thus we have shown that the concept of goal
operations is more general and placed it firmly within the
context of goal reasoning. Additionally, the work described
here is situated within a cognitive architecture, as well as
being empirically evaluated in a different problem domain
(modified blocksworld versus air campaign planning), again
showing significant generality.

Oversubscription planning (Smith, 2004) addresses the
problem of generating plans for many goals by choosing a
subset of goals when all of them cannot be achieved so as to
assist classical planners which might otherwise fail. This is
similar to a retraction transformation whereby the system
drops particular goals. Goal operations (i.e., goal selection)
include this type of planning decision and others.

The roots of our work go back to Michalski’s early
inferential theory of learning that views the process of
solving a problem as a series of knowledge transmutations
(Michalski, 1994), steps taken to modify a body of
knowledge to attain a solution. It distinguishes between
generalization and concretion transmutations. Generalization
transmutations transform specific knowledge into more
general knowledge. We are using similar ideas, i.e.,
transmutations applied to goals.

In the context of automated planning, changing the plan
representation has been long explored, for example in the
context of abstraction planning (Knoblock, 1990; Bergmann
and Wilke, 1995). Analogous to Michalski’s generalization
and concretion transmutations, plans can be generalized. For
example, the plan

 can be abstracted into
. Concretion transforms the

plan in the opposite direction. Such generalizations are done
with the aim of facilitating problem solving. For instance,
some generalizations involve not only replacing constants for
variables but eliminating some of the conditions in the
problem. A key point in abstraction planning is the distinction
between generalization and abstraction; in the former the
planning language remains the same (e.g., when replacing
constant with variables, the actions remain the same). In

contrast, in abstraction the language itself changes. For
example, the plan

 can be replaced by the construct
; is

not a name appearing in the concrete domain but a construct
to reason at higher levels. Generalization and abstraction
might make the problem easier (i.e., by removing hard
constraints; such as requiring a special kind of vehicle to
transport some specific goods). When a plan is solved in the
generalized or abstracted form, it is transformed into a
concrete solution. Nevertheless whether abstracted or
generalized, goals generated still refer to the planning
domain. In contrast, transmuted goals at the meta-level refer
to the process of generating the plan rather than the planning
domain itself in our work.

Akin to plan abstraction, work on learning HTNs aims at
generating hierarchies that subsume plan traces; although the
aim of HTN learning algorithms is to learn the abstractions.
Typically, these algorithms use as input some additional
knowledge such as task semantics defined as precondition-
effects pairs (Hogg, Munoz and Kuter, 2008) or Horn clauses
(Nejati, Langley and Konig, 2006) to find sound ways to
abstract the plan traces. The generated hierarchies represent
knowledge about the domain unlike in our work where the
transformed meta-level goals reflect knowledge about the
process not the domain itself.

Conclusion
The idea of goal change is a fundamental concept for

intelligent systems; people change their mind all the time, and
for good reason. A system that reasons about its goals and its
ability to achieve them will sometimes have to adapt to
changing information and changing environments if it is to
act rationally. Here we have argued that adaptation is not
always a mattter of plan change, rather sometimes an agent
will change its goals instead. But deciding whether to change
the plan or the goal is itself a hard decision not addressed
here. Instead we have presented a model of goal
transformations and introduced the concept within the
MIDCA cognitive architecture, showing the effects on
performance. A more complete algorithm to select a given
choice or ones to implement specific transformations are left
to future research. However, goal operations need to be used
conservatively and with caution. Otherwise in all instances,
the substitution of the current goal set with the empty set by
a series of retraction transformations can be satisfied by the
null plan, an unsatisfactory proposition.

Acknowledgments
This research was supported by ONR under grants N00014-
15-1-2080 and N00014-15-C-0077 and by NSF under grant
1217888. We thank Hector Munoz-Avila and the anonymous
reviewers for their comments and suggestions.

4390

References
Aha, D. W.; Cox, M. T.; and Munoz-Avila, H. 2013. Goal Reason-
ing: Papers from the ACS workshop, Technical Report, CS-TR-
5029, Department of Computer Science, University of Maryland,
College Park, MD.
Aha, D. W.; Klenk, M.; Munoz-Avila, H.; Ram, A.; and Shapiro, D.
2010. Goal-Driven Autonomy. Notes from the AAAI Workshop.
Menlo Park, CA: AAAI Press.
Bergmann, R. eds. 2002. Experience Management: Foundations,
Development Methodology, and Internet-based Applications. Ber-
lin: Springer.
Bergmann, R.; and Wilke, W. 1995. Building and Refining Abstract
Planning Cases by Change of Representation Language. JAIR 3: 53-
118.
Cox, M. T. 2016. A Model of Planning, Action, and Interpretation
with Goal Reasoning. In Proceedings of the fourth Annual Conf. on
Advances in Cognitive Systems, 48-63. Palo Alto, CA: Cognitive
Systems Foundation.
Cox, M. T. 2013. Goal-Driven Autonomy and Question-Based
Problem Recognition. In Proceedings of the second Annual Confer-
ence on Advances in Cognitive Systems, 29-45. Palo Alto, CA: Cog-
nitive Systems Foundation.
Cox, M.T. 2007. Perpetual Self-Aware Cognitive Agents. AI maga-
zine 28(1): 32.
Cox, M. T.; Alavi, Z.; Dannenhauer, D.; Eyorokon, V.; Munoz-
Avila, H.; and Perlis, D. 2016. MIDCA: A Metacognitive, Inte-
grated Dual-Cycle Architecture for Self-Regulated Autonomy. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence, Vol. 5, 3712-3718. Palo Alto, CA: AAAI Press.
Cox, M. T.; and Veloso, M. M. 1998. Goal Transformations in Con-
tinuous Planning. In Proceedings of the 1998 AAAI fall symposium
on distributed continual planning, 23-30. Menlo Park, CA.: AAAI
Press.
Dannenhauer, D.; and Munoz-Avila, H. 2015a. Goal-Driven Auton-
omy with Semantically-annotated Hierarchical Cases. In Proceed-
ings of the International. Conference on Case-Based Reasoning, 88-
103. Berlin: Springer.
Dannenhauer, D.; and Munoz-Avila, H. 2015b. Raising Expecta-
tions in GDA Agents Acting in Dynamic Environments. In Proceed-
ings of the International Joint Conference on Artificial Intelligence.
Palo Alto, CA: AAAI Press.
Hawes, N. 2011. A Survey of Motivation Frameworks for Intelligent
Systems. Artificial Intelligence 175(5): 1020-1036.
Hogg, C.; Munoz-Avila, H.; and Kuter, U. 2008. HTN-MAKER:
Learning HTNs with Minimal Additional Knowledge Engineering
Required. In Proceedings of the Twenty third AAAI Conference on
Artificial Intelligence, 950-956. Menlo Park, CA: AAAI Press.
Johnson, B.; Roberts, M.; Apker, T.; & Aha, D.W. 2016. Goal rea-
soning with information measures. In Proceedings of the Fourth
Conference on Advances in Cognitive Systems. Evanston, IL: Cog-
nitive Systems Foundation.
Ghallab, M.; Nau, D.; and Traverso, P. 2014. The Actorʼs View of
Automated Planning and Acting: A Position Paper. Artificial Intel-
ligence 208:1-17.
Ghallab, M., Nau, D.; and Traverso, P. 2004. Automated Planning:
Theory & Practice. Reading, MA: Elsevier.
Klenk, M.; Molineaux, M.; and Aha, D.W. 2013. Goal-Driven Au-
tonomy for Responding to Unexpected Events in Strategy Simula-
tions. Computational Intelligence 29(2): 187-206.

Knoblock, C. A. 1990. Learning Abstraction Hierarchies for Prob-
lem Solving. In Proceedings of the Eighth National Conference on
Artificial Intelligence, 923-928. Menlo Park, CA: AAAI Press.
Michalski, R. S. 1994. Inferential Theory of Learning: Developing
Foundations for Multistrategy Learning. Machine Learning: A Mul-
tistrategy Approach IV, 3-61. San Francisco: Morgan Kaufmann.
Nau, D. S.; Au, T. C.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu,
D.; and Yaman, F. 2003. SHOP2: An HTN Planning System. Jour-
nal of Artificial Intelligence Research 20: 379–404.
Nejati, N.; Langley, P.; and Konik, T. 2006. Learning Hierarchical
Task Networks by Observation. In Proceedings of the Twenty Third
International Conference on Machine Learning, 665-672. NY:
ACM.
Paisner, M.; Maynord, M.; Cox, M. T.; and Perlis, D. 2013. Goal-
Driven Autonomy in Dynamic Environments. In D. W. Aha, M. T.
Cox, & H. Munoz-Avila (Eds.), Goal Reasoning: Papers from the
ACS Workshop, 79-94. Tech. Rep. No. CS-TR-5029, Department of
Computer Science, University of Maryland, College Park, MD.
Roberts, M.; Vattam, S.; Alford, R.; Auslander, B.; Apker, T.; John-
son, B.; & Aha, D.W. 2015. Goal Reasoning to Coordinate Robotic
Teams for Disaster Relief. In A. Finzi, F. Ingrand, & Andrea Orlan-
dini(Eds.) Planning and Robotics: Papers from the ICAPS Work-
shop. Palo Alto, CA: AAAI Press.
Smith, D.E. 2004. Choosing Objectives in Over-Subscription Plan-
ning. In Proceedings of the ICAPS 4:393. Menlo Park, CA: AAAI
Press.
Vattam, S.; Klenk, M.; Molineaux, M.; and Aha, D.W.
2013. Breadth of Approaches to Goal Reasoning: A Research Sur-
vey. In D. W. Aha, M. T. Cox, & H. Munoz-Avila (Eds.), Goal Rea-
soning: Papers from the ACS Workshop, 111-126. Tech. Rep. No.
CS-TR-5029, Department of Computer Science, University of Mar-
yland, College Park, MD.
Veloso, M.; Carbonell, J.; Perez, A.; Borrajo, D.; Fink, E.; and
Blythe, J. 1995. Integrating Planning and Learning: The PRODIGY
architecture. JETAI 7(1): 81-120.

4391

