
Abstract 
Cognitive agents operating in complex and dynamic domains 
benefit from significant goal management. Operations on 
goals include formulation, selection, change, monitoring and 
delegation in addition to goal achievement. Here we model 
these operations as transformations on goals. An agent may 
observe events that affect the agent’s ability to achieve its 
goals. Hence goal transformations allow unachievable goals to 
be converted into similar achievable goals. This paper exam-
ines an implementation of goal change within a cognitive ar-
chitecture. We introduce goal transformation at the metacog-
nitive level as well as goal transformation in an automated 
planner and discuss the costs and benefits of each approach. 
We evaluate goal change in the MIDCA architecture using a 
resource-restricted planning domain, demonstrating a perfor-
mance benefit due to goal operations.  

Introduction
Recent work on goal reasoning (Aha, et al., 2013; Hawes, 
2011) has started to examine how intelligent agents can 
reason about and generate their own goals instead of always 
depending upon a human user directly. Broadly construed, 
the topic concerns complex systems that self-manage their 
desired goal states (Vattam, et al., 2013). In the decision-
making process, goals are not simply given as input from a 
human, rather they constitute representations that the system 
itself formulates, changes, and achieves. Here we examine 
the idea that goal reasoning constitutes a series of 
fundamental operations on goals that focus cognition on what 
is important for performance. 

When the world changes during planning or during 
execution (in the real world, a clear chronological line 
between the two is not always present), goals may become 
obsolete. For example, it makes little sense to pursue the goal 
of securing a town center if the battlefield has shifted to an 
adjacent location. At such a point, a robust agent must be able 
to alter the goal minimally to compensate; otherwise, a 
correct plan to secure the old location will not be useful at 
execution time. We view a goal transformation to be a 
movement in a goal space and in this paper show how such 
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procedures can be incorporated into various mechanisms of a 
cognitive architecture. 

The rest of this paper is organized as follows. Section 2 
introduces the concept of goal operations and formalizes the 
notion of goal transformation to subsume such operations. 
Section 3 describes the MIDCA cognitive architecture within 
which we have implemented such transformations. Section 4 
discusses the differences in goal transformation mechanisms 
(i.e., at the planning level or the metacognitive level). Section 
5 presents experiments and discusses the results. Related 
work is discussed in Section 6, and we conclude in Section 7. 

Goal Operations 
Work by Roberts and colleagues suggests that agents per-
forming goal reasoning transition sets of goals through a se-
ries of modes in a goal life cycle (Johnson, et al. 2016; Rob-
erts et al., 2015). To transition between two modes in the 
cycle, an agent executes a cognitive strategy. For example, 
a goal may be selected from among a set of pending goals 
to become the currently active goal using some selection 
strategy. Many of these transitions correspond to what we 
conceive of as goal operations as opposed to planning oper-
ations. A goal selection strategy is an example of the former; 
whereas an expansion strategy moving a goal from a com-
mitted to expanded mode represents a planning operation 
that creates a plan for the goal.  
 Our taxonomy of goal operations includes the following. 

Goal formulation – create a new pending goal 
Goal selection – choose an active goal from pending 
Goal change – change a goal to a similar one 
Goal monitoring – watch that a goal is still useful 
Goal delegation – give a goal to another agent 
Goal achievement – execute action to attain a goal state 

Early work by Cox and Veloso (1998) a r g u e s  that
goals can exist in an abstraction hierarchy whereby some 
goals specify desired state predicates that are more general 
than others. The concept introduced in their work is that an
important strategy for re-planning in dynamic environ-
ments is to shift goals along this hierarchy and other goal 
spaces. Such movement is  cal led a goal transformation. 

Goal Operations for Cognitive Systems 
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We cla im tha t  e ach goal operation can be thought of as 
a kind of transformation. In this paper we will show how 
both goal formulation and change are represented with a for-
mal notation of goal transformations, and we will situate 
these operations within an implemented cognitive architec-
ture. 

Planning Formalism 
A classical planning domain is defined (Ghallab, et al., 2004) 
as a finite state-transition system in which each state 

 is a finite set of ground atoms. A planning 
operator is a triple o = (head(o), pre(o), eff(o)), where pre(o) 
and eff(o) are preconditions and effects. Each action,   
is a ground instance of some operator o. An action is 
executable in a state s if s  pre( ).  

For a classical planning domain, the state-transition system 
is a tuple , where  is the set of all states, and  
is the set of all actions as above. In addition, gamma is a state 
transition function  that returns a resulting state 
of an executed action given a current state, i.e.,   .  

A classical planning problem is a triple , 
where  is a state transition system,  is the initial state, and 

 (the goal formula) is a conjunction of first-order literals. A 
goal state  satisfies a goal if . A plan  represents a 
sequence of plan steps that incrementally 
changes the state. Here we will use a notation that enables 
indexing of the individual steps or sub-sequences within the 
plan. In equation 1 we use the subscript  to indicate a plan 
that achieves a specific goal. A plan is composed of the first 
action  followed by the rest of the plan . 

    (1) 

Now we recursively redefine gamma as mapping either 
single actions or plans to states. Hence  is a solution for  
if it is executable in  and . Recursively from 
the initial state, execution of the plan results in the goal state 
(see equation 2).  

    (2) 

Interpretation and Goal Transformation 
Goal reasoning has recently extended the classical formula-
tion by relaxing the assumption that the goal is always given 
by an external user (Cox, 2007; see also Ghallab, et al., 
2014). Although the planning process may start with an ex-
ogenous goal, a dynamic environment may present unex-
pected events with which the system must contend. In re-
sponse, a goal reasoner generates new goals at execution time 
as situations warrant. Furthermore, goals themselves may 
change over time as an adaptive response to a dynamic world. 

More formally, the function  returns a (possi-
bly new) goal  given some state  and a current goal . Here 
we posit a simple model of goal change  

that represents the set of potential operations or transfor-
mations on goals an agent may select. A goal transformation 
is a tuple  = (head( ), parameter( ), pre( ), res( )), where 
pre( ) and res( ) are ’s preconditions and result. Then given 
 and , the agent makes a decision  that results 

in  output . As such, β represents a 
state interpretation process that perceives the world with re-
spect to its goals, managing them as necessary. 

Goals are dynamic and subject to change. But there exists 
an element of , the identity transformation  for 
all , i.e., the tuple , which rep-
resents the decision not to change  given , i.e., the agent’s 
selection of  for . Further, goals can be created or formu-
lated given any state, including the initial state , and a goal 
state, including the empty state . This is represented by the 
goal insertion transformation . This distinguished 
operation has been a particular focus of the goal reasoning 
community (see Klenk et al., 2013). Given that it relaxes the 
assumption that goals are necessarily provided by a human, 
this significantly differs from classical planning. Further as 
shown by the specification of β in Table 1, insertion is treated 
differently than others (see Cox, 2016, regarding ). 

Assuming an agent’s goal agenda  
containing the current goal , Table 1 shows the details of 
β. The function (1) uses choose to select a sequence of goal 
operations to apply; (2) alters the goal agenda; and (3) returns 
a (possibly) new or changed goal. Section 4 will present a 
simple example of an application of these functions we im-
plemented for the empirical results shown subsequently. 

Model of Planning, Acting, and Interpretation 
A plan to achieve a goal  can now be represented as 

. Using this notation, we combine plans, action (plan 
execution), and interpretation as in equation 3 (Cox, 2016). 

(3)

However when goals change (or new ones are added) due 
to , plans may need to change as well. Thus, the goal rea-
soner may need to re-plan and thereby alter the length and 
composition of the remainder of the plan. To cover this con-
tingency, we define a (re)planning function phi that takes as 
input a state, goal, and current plan as in expression 4.  

Note that in the general case  may or may not be equal 
to . Inserting φ into equation 3 in place of , we obtain equa-
tion 5 below. The formalism is general across different vari-
ations of goal reasoning and (re)planning. 

       (5)
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Table 1. Beta and Choose. Although  is an ordered set,  is a 
sequence where  is treated like the set operator ∈ and “–“ like 
set difference. Reverse maintains the order of  (choose inverts it). 

:  
  

if  
        if  then                                           // insertion only 

 
                 
        else =   -     // insertion plus others 
                
                () 
else        // no insertion 
         
 

 
 

 
 

    

MIDCA: The Metacognitive Integrated  
Dual-Cycle Architecture  

The Metacognitive Integrated Dual-Cycle Architecture 
(MIDCA) (Cox et al., 2016; Paisner, et al., 2013) is an agent 
architecture that has both cognitive and metacognitive 
capabilities. Figure 1 shows the two reasoning cycles. The 
cognitive cycle directly reasons about and interacts with the 
world through the following phases. Perceive receives 
environmental input (noise + ѱ  Ѱ), and Interpret processes 
the input, noting any anomalies or opportunities and 
generating new goals (i.e., the goal insertion transformation, 

, ) ). Interpret partially corresponds to the function 
β. Evaluate checks to see which goals the agent is pursuing 
are still relevant. Intend chooses which goal  the agent 
should be currently pursuing from the goal agenda . As such 
it implements a goal selection operation. Plan generates a 
plan  to achieve the agent’s current goals, and it 
corresponds to the function φ of expression 4. Finally, the Act 
phase executes the next action in the agent’s current plan, and 
it corresponds to the function  of equation 2. 

Much like the cognitive cycle, the metacognitive cycle 
(abstractly represented at the top of Figure 1) goes through 
cyclical phases. Computationally the primary difference 
between the metacognitive and cognitive cycles is the source 
of perception and the locus of actions. The metacognitive 
cycle introspectively monitors  and applies executive control 
to the cognitive layer instead of the environment.  

Instead of perceiving environmental input, a metacognitive 
Monitor phase assembles a trace representation of the 
cognitive phases. The trace, τ,  is then processed via 
metacognition in a manner similar to the cognitive layer. A 
metacognitive Interpret phase introspects upon τ and notes 
any anomalies or opportunities introducing new meta-goals 
as necessary. A meta-level Evaluate phase updates the 

agent’s current meta-goals, ensuring they are still applicable. 
A metacognitive Intend phase chooses a meta-goal to pursue 
and then generates a plan to achieve that goal. Finally, like 
the cognitive Act phase, the the next action in the meta-level 
plan will be executed by a metacognitive Control phase (e.g., 
change the goal at the cognitive level, ). 

Goal Transformations in MIDCA 
Goal change is required in at least two cases: (i) when the 
agent senses a change in the environment that dictates an 
adjustment either during the planning process or during the 
execution of plan steps; and (ii) when the planner cannot 
solve the current problem because of a lack of known 
resources. In this paper, we focus on the second case. The 
agent is presented with a situation where resources needed to 
achieve an original goal become unavailable. Within the 
cognitive architecture there are at least two distinct places to 
perform goal transformation: (1) within the planning system 
of the Plan phase of the cognitive layer and (2) within the 
metacognitive reasoning component. 

For example, consider the generalization transformation. 
Here, we use a specific transformation  that operates on 
goals representing predicate relations between objects of type 

 (see Table 2). If goal change occurs during 
metacognitive reasoning, the state  comes from the cognitive 
trace τ; otherwise, access to  is direct.  

Now assuming operations , an agent 
may start with the goal to achieve a stable tower of blocks, 
i.e., , etc. But given an unexpected lack 
of mortar resources (e.g., another agent may have recently 
used them), the agent might change the goal during execution 
(i.e., at action  in , where ) to a less durable 
tower (i.e., ) where  is the parent of 

 within a class hierarchy. We then represent an 
application of the goal generalization  in the 
expression . 

Figure 1. Schematic of the MIDCA Architecture  
(adapted from Paisner, et al., 2013) 
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Table 2. Goal generalization and its inverse, goal specialization. 
Bergmann (2002) provides a notation for class hiearchy  having 
leaf classes  and whose root class  has superclass , i.e., 

. Precondition  of both transformations 
assures that a parent or child class  exists. State  in  is 
within the scope of choose from Table 1.  

 
 

 
 

 
                

 
pre ) = { , } 

 

 
 

 
 

 
 

 
pre ) = { , } 

 

Cognitive Level Goal Transformations 
Goal transformations can be implemented within a 
hierarchical task network (HTN) planner’s methods. HTN 
planning is a powerful planning paradigm because of its 
incorporation of domain knowledge into methods, which 
guide the plan generation. Assuming goal transformations of 
the domain are known by the domain engineer, this 
knowledge can be incorporated into the HTN methods. For 
example, an extra precondition can be added to the method 
that checks the state for an available resource. If the resource 
is available, the method will guide the search in one direction 
utilizing that resource. If it is unavailable, it will guide the 
search in another direction (one that may be less desireable 
but uses no resources). In this way, various goal 
transformations can be performed during plan generation. 
This approach contains all of the goal transformation 
knowledge within the planner. The costs of this approach are 
the extra knowledge burden and the encoding of it into the 
HTN methods. The benefit is a self-contained goal-
transformation enabled planner that can perform goal 
transformations during plan generation. This allows a goal 
change to occur without any additional cognitive cycles.  

Metalevel Goal Transformations 
Alternatively, goal transformation can occur at the metalevel. 
No goal transformation knowledge needs to be encoded in the 
HTN methods. Instead, in the example where a resource is 
not available yielding the current goal as unachievable, the 
planner would notify the metacognitive reasoner. For 
example, the planner could fail to produce a plan (or log a 

warning) in the cognitive trace (i.e., input to metalevel; see 
Figure 2). The metacognitive layer would perceive the 
warning or failure to produce a plan and begin its reasoning 
mechanism. As a result, the metalevel could transform the 
previous goal into a new goal that did not require the resource 
and perform a goal retraction followed by insertion. During 
the next cognitive Intend phase, the cognitive layer will then 
choose to pursue the recently inserted goal.  

 Figure 2 shows the last two phases of the trace when the 
cognitive Plan phase fails to produce a plan for the goal to 
achieve a stable tower. The goal for a stable tower is encoded 
as . 
Predicate stableOn is similar to on with the additional 
requirement that a piece of mortar is used to cement the 
blocks into place. In this example, only one piece of mortar 
is available instead of the needed three (one for each 
stableOn). The cognitive level Plan phase will attempt to plan 
for the stable tower goal and fail. Figure 2 shows the segment 
of the trace used to identify the failure of the cognitive Plan 
phase (and thus trigger metacognitive reasoning). In the trace 
(τ) segment we see the results of Intend and Plan phases (this 
is part of the whole trace produced from every phase executed 
thus far in MIDCA’s execution). The trace segment for 
Intend records as input the pending goals ( ) and 
selected goals ( ). Here we see PG contains the goal 
atoms for the stable tower. Intend, the phase with the primary 
purpose of selecting which goals to commit to, moves these 
three goal atoms to SG as its output. At this point, everything 
at the cognitive level is proceeding as expected. 

The next phase, Plan, is tasked with using the newly 
selected goals along with the current world state (WORLD ≈ 
Ѱ) to produce a plan. At the current time in MIDCA’s 
execution, the world state contains only a single piece of 
mortar, not enough for all three of the stableOn goal atoms. 
Once the Plan phase finishes and the trace output showing no 
plan is recorded, the metacognitive Monitor phase retrieves 
the trace segment and the metacognitive Interpret notes an 
anomaly: the cognitive level Plan phase produced no plan. 

Figure 2. Trace τ of cognitive activity 
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The expectation used to detect this anomaly is that the Plan 
phase should produce a non-empty plan that achieves the 
selected goals (given a mental domain model of operators for 
each phase, this kind of expectation would fall under the 
immediate type of expectations categorized in (Dannenhauer 
and Munoz-Avila 2015b). We use expert authored 
expectations here and leave a mental domain model and 
resulting expectations for future work). The metacognitive 
Intend phase also inserts a new meta-goal which is to have an 
achievable goal at the cognitive level.  

Specifically, let the cognitive goal be 
 and 

the meta-goal be . Next, the 
metacognitive Intend phase commits to . The 
metacognitive Plan phase produces an action plan  
consisting of the single action . 
Finally, the meta-level Control phase executes  (which 
uses the goal transformation ) and yields the modified 
goal . The 
goal  is updated in MIDCA’s memory and metareasoning 
finishes. Finally cognitive reasoning continues. The 
following Intend phase will select , and the Plan phase 
produces a non-empty plan. 

The cost of the metalevel approach is the requirement for 
more computation. The cognitive level Plan phase must first 
fail (or issue a warning) before the metalevel performs the 
goal change operation. Then the cognitive layer can continue, 
and the next Intend phase will select the new goal. The 
benefits of this approach are a planner-independent 
mechanism for goal change and a declarative representation 
of change that enables reasoning about such operations.  

Computational Experiments 
We evaluated MIDCA’s goal transformation in a modified 
blocks world domain. The blocks world is a well known 
planning domain where an agent is tasked with arranging 
blocks on a table. The actions available to the agent are 
pickup from and putdown on the table, unstack, and stack. 
The modification we introduced is a resource called mortar 
that allows the agent to build sturdier towers, and thus 
achieve more points for those towers. Specifically, for every 
two blocks adjoined with mortar the agent receives an extra 
point. Each block in the tower is also worth one point. New 
operators are introduced that allow blocks to be stacked using 
mortar, in addition to the operators to stack without mortar. 
The former achieves the goal of stableOn(A,B); whereas the 
latter achieves on(A,B). The change from the fomer to the 
latter is an example of the generalization transformation.  

There is always a finite amount of mortar. If there is not 
enough mortar to stack blocks, the agent will need to change 
the goal and resort to stacking without mortar and reduced 
points rewarded for that tower. This requires a transformation 
of the goal, because the original goal is always to build 
sturdy, mortar towers. We ran experiments varying the 
number of resources (i.e., mortar) and the number of goals. If 
the agent did not have enough mortar, the solid-tower goals 
could not be achieved, and without a transformation of the 
goal, the agent would gain no reward. 

Empirical Results 
We collected data from 260 instances of MIDCA varying 
resources and number of goals. Figure 3 shows the results of 
MIDCA using a goal transformation strategy; whereas Figure 
4 shows the results with fixed, static goals (i.e., no goal 
change). The y-axis is the percentage of the maximum score 
the agent was able to achieve (i.e. the maximum score is the 
score received in the case all towers use mortar). By 
comparing the graphs, it is clear that when the number of 
resources is sufficient for the complexity of the problem, both 
graphs show equivalent performance. But when resources 
relative to the number of goals are scarce, MIDCA is able to 
achieve a higher score by changing goals. In Figure 4, one 
side of the graph drops to zero under resource limitations. By 
changing goals appropriately, MIDCA is able to achieve a 
higher performance score in Figure 3.  

Related Work 
Goal-driven autonomy (GDA) agents (a kind of goal 
reasoning agent) generate new goals as the agent encounters 
discrepancies between the agent’s expectations of the 

Figure 4. Performance without goal transformation 

Figure 3. Performance with goal transformation 
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outcome of its actions and the observed outcomes in the state 
(Aha, et al., 2010; Cox, 2013; Klenk et al., 2013; 
Dannenhauer and Munoz-Avila, 2015a). When such a 
discrepancy occurs, GDA agents generate an explanation for 
the discrepancy (e.g., a truck is not moving as expected 
because it is stuck in the mud), and generate a new goal 
accordingly (e.g., unstuck truck). Goals are not usually 
transformed other than retraction and insertion; new goals are 
generated, possibly replacing the previous goals or to aid 
achieving those goals. To some extent, the work here is more 
general; goal generation or formulation is one possible 
operation of the taxonomy described in the introduction; a 
goal reasoner may perform any of these operations.  

The work here is related to the previous effort by Cox and 
Veloso (1998), although a number of differences exist. The 
goal operations implemented in their work (referred to as 
transformations) were for the state-space planner PRODIGY 
(Veloso et al., 1995), whereas our work implements them for 
the hierarchical planner SHOP (Nau et al., 2003) embedded 
within MIDCA. Thus we have shown that the concept of goal 
operations is more general and placed it firmly within the 
context of goal reasoning. Additionally, the work described 
here is situated within a cognitive architecture, as well as 
being empirically evaluated in a different problem domain 
(modified blocksworld versus air campaign planning), again 
showing significant generality. 

Oversubscription planning (Smith, 2004) addresses the 
problem of generating plans for many goals by choosing a 
subset of goals when all of them cannot be achieved so as to 
assist classical planners which might otherwise fail. This is 
similar to a retraction transformation whereby the system 
drops particular goals. Goal operations (i.e., goal selection) 
include this type of planning decision and others.  

The roots of our work go back to Michalski’s early 
inferential theory of learning that views the process of 
solving a problem as a series of knowledge transmutations 
(Michalski, 1994), steps taken to modify a body of 
knowledge to attain a solution. It distinguishes between 
generalization and concretion transmutations. Generalization 
transmutations transform specific knowledge into more 
general knowledge. We are using similar ideas, i.e., 
transmutations applied to goals. 

In the context of automated planning, changing the plan 
representation has been long explored, for example in the 
context of abstraction planning (Knoblock, 1990; Bergmann 
and Wilke, 1995). Analogous to Michalski’s generalization 
and concretion transmutations, plans can be generalized. For 
example, the plan 

 can be abstracted into 
. Concretion transforms the 

plan in the opposite direction. Such generalizations are done 
with the aim of facilitating problem solving. For instance, 
some generalizations involve not only replacing constants for 
variables but eliminating some of the conditions in the 
problem. A key point in abstraction planning is the distinction 
between generalization and abstraction; in the former the 
planning language remains the same (e.g., when replacing 
constant with variables, the actions remain the same). In 

contrast, in abstraction the language itself changes. For 
example, the plan 

 can be replaced by the construct 
;  is 

not a name appearing in the concrete domain but a construct 
to reason at higher levels. Generalization and abstraction 
might make the problem easier (i.e., by removing hard 
constraints; such as requiring a special kind of vehicle to 
transport some specific goods). When a plan is solved in the 
generalized or abstracted form, it is transformed into a 
concrete solution. Nevertheless whether abstracted or 
generalized, goals generated still refer to the planning 
domain. In contrast, transmuted goals at the meta-level refer 
to the process of generating the plan rather than the planning 
domain itself in our work. 

Akin to plan abstraction, work on learning HTNs aims at 
generating hierarchies that subsume plan traces; although the 
aim of HTN learning algorithms is to learn the abstractions. 
Typically, these algorithms use as input some additional 
knowledge such as task semantics defined as precondition-
effects pairs (Hogg, Munoz and Kuter, 2008) or Horn clauses 
(Nejati, Langley and Konig, 2006) to find sound ways to 
abstract the plan traces. The generated hierarchies represent 
knowledge about the domain unlike in our work where the 
transformed meta-level goals reflect knowledge about the 
process not the domain itself. 

Conclusion 
The idea of goal change is a fundamental concept for 

intelligent systems; people change their mind all the time, and 
for good reason. A system that reasons about its goals and its 
ability to achieve them will sometimes have to adapt to 
changing information and changing environments if it is to 
act rationally. Here we have argued that adaptation is not 
always a mattter of plan change, rather sometimes an agent 
will change its goals instead. But deciding whether to change 
the plan or the goal is itself a hard decision not addressed 
here. Instead we have presented a model of goal 
transformations and introduced the concept within the 
MIDCA cognitive architecture, showing the effects on 
performance. A more complete algorithm to select a given 
choice or ones to implement specific transformations are left 
to future research. However, goal operations need to be used 
conservatively and with caution. Otherwise in all instances, 
the substitution of the current goal set with the empty set by 
a series of retraction transformations can be satisfied by the 
null plan, an unsatisfactory proposition. 
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