

Abstract

We present a metacognitive, integrated, dual-cycle
architecture whose function is to provide agents with a
greater capacity for acting robustly in a dynamic environment
and managing unexpected events. We present MIDCA 1.3,
an implementation of this architecture which explores a novel
approach to goal generation, planning and execution given
surprising situations. We formally define the mechanism and
report empirical results from this goal generation algorithm.
Finally, we describe the similarity between its choices at the
cognitive level with those at the metacognitive.

 Introduction
Research on cognitive architectures have made significant
contributions over the years including the ability to reason
with multiple knowledge modes (Laird 2012), to introspec-
tively examine the rationale for a decision (Forbus, Klenk
and Hinrichs 2009), and the ability to learn knowledge of
varied levels of abstraction (Langley and Choi 2006). Com-
paratively less research efforts examine the metacognitive
contributions to effective decision-making and behavior.
We have worked to develop a comprehensive theory of cog-
nition and metacognition by proposing a metacognitive, in-
tegrated dual-cycle architecture (MIDCA) and applying an
implementation of this architecture to various problem-solv-
ing domains. The dual-cycle architecture integrates a prob-
lem-solving and comprehension loop at the cognitive level
with a control and monitoring loop at the metacognitive
level. We use a standard planner for both problem-solving
and control functions, while we concentrate most of our
work on the comprehension and monitoring processes.

Copyright © 2016, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

For each of the object and meta-level cycles, we use a
note-assess-guide procedure (Anderson, Oates, Chong and
Perlis 2006; Paisner, Maynord, Cox and Perlis 2013). The
note phase detects discrepancies, the assess phase hypothe-
sizes causes for discrepancies, and the guide phase performs
a suitable response. This research will enable more robust
behavior in autonomous intelligent systems because the ca-
pabilities lead both to recovery in the face of surprise and to
more effective learning (i.e., by triggering opportunities to
fill gaps in the agent’s own knowledge).

Autonomy has been studied from many perspectives, and
the literature is replete with differing approaches to this
topic. The results of autonomy are often some mechanism
by which we automate system behavior and decision-mak-
ing computationally. We claim that for a system to exhibit
self-regulated autonomy, however, it must have a model of
itself in addition to the usual model of the world. Like self-
regulated learning (e.g., Bjork, Dunlosky and Kornell 2013),
whereby a learner manages the pace, resources, and goals of
learning, self-regulated autonomy involves a system that
similarly manages the parameters of problem-solving and
behavior by understanding itself and its actions in context of
its overall environment and the goals it is trying to achieve.

Here we introduce the MIDCA architecture within which
we examine issues of autonomy and reasoning about goals.
We provide a new formalism that places this work within
the formal context of AI planning research and goal reason-
ing. We then report empirical results from the MIDCA cog-
nitive cycle and early results from the metacognitive cycle.
After a summary of related research, we conclude with brief
comments and a pointer to future research directions.

MIDCA: A Metacognitive, Integrated Dual-Cycle

Architecture for Self-Regulated Autonomy

Michael T. Cox, Zohreh Alavi, Dustin Dannenhauer,*
Vahid Eyorokon, Hector Munoz-Avila,* and Don Perlis§

Wright State University

Dayton, OH 45435
michael.cox@wright.edu

*Lehigh University
Bethlehem, PA 18015

hem4@lehigh.edu

§University of Maryland
College Park, MD 20742

perlis@cs.umd.edu

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

3712

MIDCA and Goal Reasoning
Recent work on goal reasoning (Aha, Cox, and Munoz-
Avila 2013; Hawes, 2011) has started to examine how intel-
ligent agents can reason about and generate their own goals
instead of always depending upon a human user directly.
Broadly construed, the topic of goal reasoning concerns
cognitive systems that can self-manage their goals (Vattam,
Klenk, Molineaux, and Aha 2013). MIDCA’s decision-
making process has significant focus on goal formulation
and goal change, and as such, draws much from the work on
goal reasoning.

 MIDCA consists of “action-perception” cycles at both
the cognitive (i.e., object) and the metacognitive (i.e., meta)
levels. The output side (i.e., problem-solving) of each cycle
consists of intention, planning, and action execution,
whereas the input side (i.e., comprehension) consists of per-
ception, interpretation, and goal evaluation (see Figure 1). A
cycle selects a goal and commits to achieving it. MIDCA
then creates a plan to achieve the goal and subsequently ex-
ecutes the planned actions to make the domain match the
goal state. The agent perceives changes to the environment
resulting from the actions, interprets the percepts with re-
spect to the plan, and evaluates the interpretation with re-
spect to the goal. At the object level, the cycle achieves goals
that change the environment. At the meta-level, the cycle
achieves goals that change the object level. That is, the met-
acognitive “perception” components introspectively moni-
tor the processes and mental state changes at the cognitive
level. The “action” component consists of a meta-level con-
troller that mediates reasoning over an abstract representa-
tion of the object level cognition.

MIDCA Version 1.3
The MIDCA_1.3 model includes a complete planning-act-
ing and perception-interpretation cycle at the cognitive

1 The full source code with documentation and examples is available at
https://github.com/mclumd/MIDCA

level, and it incorporates with this an interface to the envi-
ronment.1 This interface interacts with either a simple world
simulator (e.g., blocksworld) or the ROS middleware for ro-
botic applications (Quigley et al. 2009). The planning com-
ponent integrates the SHOP2 hierarchical network planner
(Nau et al. 2003). We have also integrated the
XPLAIN/Meta-AQUA (Burstein et al. 2008; Cox and Ram
1999) multistrategy explanation system into the interpreta-
tion component. Our standard simulator takes actions from
the planner, calculates the changes to the world, and then
passes the resulting state to the comprehension side of the
cycle. The ROS interface is similar and briefly explained be-
low. Comprehension examines the input for anomalies and
formulates new goals for the planner as warranted. Figure 2
diagrams the basic implementation.

MIDCA ROS Interface
We added an application programming interface (API) to
MIDCA_1.3 to communicate with ROS and a Baxter (Fitz-
gerald 2013) humanoid robot. This interface coheres to the
principles outlined in Scheutz, Harris and Schemerhorn
(2013).2 It is responsible for sending messages to ROS as
requested by MIDCA, and for placing messages received in
appropriate queues for MIDCA to process (again, see Figure
2). We created other ROS nodes which are responsible for
doing specific actions, such as moving the Baxter’s arms,
and for getting object representations. These communicate
with MIDCA through the API.

In this API, the types of ingoing and outgoing messages
on each ROS topic and their meaning is specified. As these
messages are asynchronously received, a set of MIDCA
handlers put them in appropriate buffers within a partition

2 See http://tinyurl.com/oauahz4 for a video with an example interaction.

Memory

Domain

goal
change goal

input

Intend

Act

Plan

Evaluate

Perceive

Interpret

Goals
subgoal

goal
insertion

Figure 1. Schematic action-perception cycle for both object
and meta-levels

Figure 2. Block diagram of overall MIDCA_1.3 system

MIDCA Cognitive cycle

MIDCA Metacognitive cycle

Memory

Tr
ac

e

C
on

tro
l

Standard Simulator

Buffers

Feedback Audio ImageEf
fe

ct
or

M

es
sa

ge
s

Gazebo Simulator

3713

of MIDCA memory. During the Perceive phase (Figure 1),
these messages will be accessed and stored in MIDCA’s
main memory.

In the Plan phase, after it creates a high level plan for the
selected goal, it operationalizes each action using a mapping
between high-level actions and directly executable methods
for the robot. For example, the high level action reach(ob-
ject) is instantiated in a method which sends out a ROS mes-
sage to the node which operates the arm, then repeatedly
checks for feedback indicating success or failure. Once all
actions in a plan are complete, the plan itself is considered
complete. If any action fails, the plan is considered failed.
MIDCA Metacognitive Interface
The metacognitive cycle in MIDCA_1.3 receives a trace of
activity accumulated from each phase of the object-level.
The trace is a linked-list like data structure storing records
per phase in the order that they occur during execution at the
object level. The first metacognitive phase on the input side
of the cycle, monitor (Perceive in Figure 1), receives the
trace and selects the relevant part of the trace to reason over.
Nodes in the trace correspond to a single phase and record
all inputs and outputs of that phase. For example, the record
for the object-level Plan phase includes the state and goal3

given to SHOP2 and the resulting plan. After the monitor
phase receives and refines the trace, the metacognitive cycle
advances to the interpret phase where discrepancy detection
reasons over the refined trace.

MIDCA and Goal-Driven Autonomy (GDA)
MIDCA’s cycle at the object level is related to goal-

driven autonomy (GDA) (Aha et al. 2010; Cox 2013; Klenk,
Molineaux and Aha 2013), a kind of goal reasoning that fo-
cusses on initial formulation of goals. In GDA, an agent for-
mulates goals as a result of discrepancies between the
agent’s internal expectations to the outcome of its actions
and the actual outcome of the actions. When such a discrep-
ancy occurs, the agent generates an explanation of the dis-
crepancy and based on the explanation, it formulates a new
goal to achieve. The crucial difference between MIDCA and
GDA is that MIDCA reasons both at the object-level and at
the meta-level, whereas GDA research has focused on rea-
soning at the object level only.

Formal Representations for Goal Reasoning
We now formally define the notion of interpretation for goal
reasoning. We use classical planning as the basic formalism.
Despite some well-known assumptions (e.g., actions are de-
terministic), classical planning provides an ideal formalism

3 Technically, SHOP2 receives tasks as inputs. In MIDCA, we use the
standard conversion of encapsulating any goal into a task (e.g.,
achieve()).

to define these complex notions because of its simplicity and
clear semantics.

Classical Planning
A classical planning domain is defined (Ghallab, Nau, and
Traverso 2004) as a finite state-transition system in which
each state = { , … , } is a finite set of ground atoms
of a function-free, first-order language . A planning oper-
ator is a triple o = (head(o), pre(o), eff(o)), where pre(o) and
eff(o) are o’s preconditions and effects. Each action is a
ground instance of a planning operator. An action is
executable in a state s if s pre(), in which case the result-
ing state is (s ()) eff+(), where eff+() and eff ()
are the atoms and negated atoms, respectively, in eff().

For a classical planning domain, the state-transition sys-
tem is a tuple = (, ,), 4 where is the set of all states,
and is the set of all actions as above. In addition, gamma
is a state transition function : × that returns the re-
sulting state of an executable action given a current state.
Thus from any given state and action, one can infer the sub-
sequent state (,) that follows action execution.

A classical planning problem is a triple = (, ,),
where is a state transition system, is the initial state, and

(the goal formula) is a conjunction of first-order literals.
A goal state satisfies a goal if . A plan represents
a (possibly empty) sequence of plan steps (i.e., actions)

… that incrementally changes the state of the
world. Here we will use a notation that enables indexing of
the individual steps or sub-sequences within the plan. In
equation 1 we use the subscript to indicate a plan that
achieves a specific goal. A plan is composed of the first ac-
tion followed by the rest of the plan [2 . .].

[1. .] = | [2 . .] = … (1)

Now we recursively redefine gamma as mapping either
single actions or plans to states. Hence is a solution for

if it is executable in and (,) . Recursively
from the initial state, execution of the plan results in the goal
state (see expression 2). The function corresponds to Act
in Figure 1.

, = (,), [2. .] (2)

Interpretation and Goal Reasoning
Goal reasoning has recently extended the classical formula-
tion by relaxing the assumption that the goal is always given
by an external user (Cox 2007; see also Ghallab, Nau and
Traverso 2014). Although the planning process may start
with an exogenous goal, a dynamic environment may pre-
sent unexpected events with which the system must contend.

4 Note that we are ignoring in the classical model the set of exogenous
events that are similar to actions but are outside the control (and possibly
the observation) of the reasoning system.

3714

In response a goal reasoner must be able to generate new
goals at execution time as situations warrant.

Formally, the function (see expression 3a) returns a
(possibly) new goal given some state and a current goal

. As such, represents a state interpretation process that
perceives the world with respect to its goals (i.e., Interpret
in Figure 1). It is central to goal formulation and manage-
ment.

(,) (3a)

Goal Transformation
Unlike classical planning models that assume goals to be
static and given externally, the goal reasoning model views
goals as malleable and subject to change (Cox and Zhang
2007). For example, a chess player may start out with the
goal to achieve checkmate (ch). But given a series of un-
successful opening moves (i.e., [1. .] where <),
the player may change the goal to draw (dr). See expression
(3b).

(, [1. .]), (3b)

Goals can undergo various transformations including prior-
ity shifts and goal abandonment (Cox and Veloso 1998).
Over time goals follow arcs or trajectories through a space
of goals (Bengfort and Cox 2015). Most importantly goals
can be created or formulated given a problem state.

Goal Formulation
From some initial state and no goal state, an agent formu-
lates a new goal as shown in expression 3c.

(,) (3c)

In one sense, this can still entail user-provided goals. If
the input state is one resulting from a speech act whereby a
human requests a goal to be achieved, the function of is to
interpret the intention of the human and to infer the goal
from the utterance. In another sense, however, this signifi-
cantly differs from the classical formulation of a problem.
For goal reasoning in its simplest form, a planning problem
can be cast as the tuple = (,). Given a state transition
system and an initial state, the goal-reasoning task is to for-
mulate a goal (if a problem indeed exists in the initial state)
and create (and execute) a plan to achieve it. Under most
planning schemes, the system halts when the goal state is
achieved (or even when a plan is simply found). In goal rea-
soning, an agent can search for new problems once all goals
are achieved by interpreting the final goal state . In this
case, expression 3c becomes as in expression 3d. In general,
goals can be formulated from any state.

, (3d)

A Model of Plans, Actions, and Interpretation
A plan to achieve a goal (,) can now be written as

(,). Using this notation, we combine plans, action (plan
execution), and interpretation in equation 4.

, (,) = (,), (,), (,) [2. .] (4)

When beta generates an exogenous initial goal from
the initial state and simply returns the input goal from all
other states (i.e., = in 3a), the formalization reduces to
classical planning with a user-given goal. That is, equation
4 is equivalent to equation 2 because expression 3a repre-
sents a trivial boundary case. However when goals change
(or new ones are added), plans may need to change as well.

The problem with this formalization is that, in the recur-
sive right-hand side of equation 4 above, the plan is not
static as defined in equation 1. That is, it is not necessarily
of size 1. Instead, because the goal may change due to
beta, the goal reasoner may need to re-plan and thereby alter
the length and composition of the remainder of the plan. To
cover this contingency, we define a (re)planning function
phi that takes as input a state, goal, and current plan as in
expression 5. corresponds to the Plan process
in Figure 1.

, , [1. .] [1. .] (5)

Note that in the general case may or may not be equal
to . Inserting the re-planning function into equation 4, we
obtain equation 6 below that resolves the anomaly indicated
above. Given , the formalism is general across different
variations of goal reasoning and (re)planning.

, (,) = ((,), (6)
 (,), (,), (,) , (,)[2. .]]])

Object Level Performance
We exemplify the object-level cycle applied to a variation
of the blocksworld domain implemented in the standard
simulator; this variation adds possible plan failures. The
world includes both blocks and pyramids. But instead of ar-
bitrary block stacking, the purpose of plan activity is to build
houses such that blocks represent the wall structure and pyr-
amids represent house roofs. Within this domain, objects
may also catch on fire, an exogenous event, and so impede
housing construction. We perform experiments testing
house construction performance using a top-down goal gen-
eration strategy compared to a statistical approach (see May-
nord, Cox, Paisner and Perlis 2013). We describe some of
these details and a description of the individual interpreta-
tion methods used for comprehension below.

3715

The current scenario implements a house building cycle
that transitions through states as shown in Figure 3. If a part
of a house (i.e., a block) catches fire, an operator exists that
can extinguish the fire. When parts of houses are on fire,
they do not count toward rewards for housing construction.
Rewards are provided in terms of points, one for each block
or pyramid not on fire in each completed house or tower.
For example if the agent in Figure 3 (c) was to next pickup
D and place it on A, then the result would be a tower worth
3 points. If D was placed from 3(b), it would be 2 points.

SHOP2 produces various block stacking plans, such as
the one for building a tower implied by the goal conjunct
((on A B)(on D A)). During plan execution, MIDCA per-
ceives not only the results of performed actions but also
states resulting from exogenous events. For example, block
A may catch on fire. During interpretation of this new state,
MIDCA needs to recognize that the fire represents a prob-
lem for its tower building tasks and generate a new goal in
response.

Three conditions exist under which MIDCA solves tower
construction problems. Under the exogenous goals condi-
tion, MIDCA only plans for goals given to it by the user.
Under this condition it generates no goals of its own and ig-
nores fires. Under the statistical goal generation condition,
it uses a knowledge structure called a Tilde-FOIL Tree
(Maynord et al. 2013) to react to fires by generating goals
to achieve the negation of blocks on fire. These trees are
learned by giving it examples of states under which the goals
should be generated and states from which they should not.
The final condition is the GDA goal generation condition.
In this condition, MIDCA uses XPLAIN interpreter to map
from the contradiction (i.e., expects A to be clear and ob-
serves that it is not; it is on fire instead) to an explanation
that the fire was possibly caused by an arsonist. It then gen-
erates a goal to find and apprehend the arsonist. This goal
represents a problem state that includes the anticipation of
future fires and thus addresses the larger context of the situ-
ation.

Figure 4 shows the resulting score (y-axis) as a function
of the probability that blocks catch fire (x-axis). As the prob-
ability of blocks catching fire increases, the performance of
statistical goal generation alone converges to that of using
only externally provided goals (i.e., no self-generated goals

to handle the fires). Using GDA results in near perfect be-
havior because the cause of the fires (the arsonist) is ad-
dressed rather than just reacting to the fires after they occur.

Meta-Level Performance
The metacognitive cycle begins with the monitor phase
(Perceive in Figure 1) receiving a reasoning trace . Since
the trace grows larger with every object level phase exe-
cuted, the monitor phase also trims the trace into a more rea-
sonable and relevant subtrace 1. In the current implementa-
tion, the trace is refined to the last object level phase exe-
cuted. Moving on, the next metacognitive phase (i.e., Inter-
pret) reasons over 1 to detect any discrepancies. In the style
of goal-driven autonomy, when a discrepancy is found, an
explanation is generated, followed by a goal to correct the
discrepancy. This concludes the input side (monitor-inter-
pret-evaluate) of MIDCA's metacognitive level. Next, the
Intend phase selects which goal to pursue and sends that
goal to the plan phase, which stores the plan in memory for
the following controller phase to act upon.

In one currently implemented scenario, the cognitive-
level planner fails to produce a plan, resulting in an impasse.
The metacognitive level begins by receiving the trace con-
taining the planner’s failure to produce a plan. In this situa-
tion, the metacognitive level expects the planner to produce
a non-null plan. Expectations are verified in the Interpret
phase by reasoning over 1, producing the discrepancy that
an impasse has occurred. The Interpret phase then uses this
discrepancy as input to generate an explanation which is
then used to generate a goal . (we currently map discrep-
ancies directly to goals; generating explanation is a topic of
future work). The Intend phase selects this goal, followed by
the Plan phase generating a plan to replace the object-level
planner. Finally, the meta controller acts upon the plan pro-
cess and executes the replace() action. Table 1 depicts the
similarities with an equivalent process at the cognitive level.

0

100

200

300

400

500

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9

T
O

W
E

R
 S

C
O

R
E

PROBABILITY OF FIRE

Exogenous goals Stat. goal gen.

GDA goal gen.

A
B CB C

A
B C

a) b) c)
DD

A

D

Put out fire with water
Figure 4. Performance as a function of fire probabilityFigure 3. Unexpected event in housing construction cycle

3716

Table 1. Comparison between types of interpretation

Object level interpretation Meta-level interpretation
Expects clear(A);
Observes clear(A)

Symptom = contradiction

Expects ; Observes

Symptom = impasse
Explanation:
on-fire(A) clear(A)

Explanation:
flawed-behavior()

 impasse

Goal(g) = on-fire(A) Goal(g) =

flawed-behavior()

Plan() = extinguish(A) Plan = replace()

Related Research
MIDCA is related to other cognitive architectures in that it
uses varied levels of abstractions. They differ on how these
abstractions are represented. SOAR (Laird 2012) represents
different levels of abstraction in a hierarchy. Abstract oper-
ators are used to refine abstract goals into increasingly con-
crete ones. SOAR enables the integration of a variety of
knowledge forms than can be triggered by production rules
at any level of the hierarchy. ACT-R (Anderson 1993) also
uses production levels of varied level of abstraction. They
generate new goals when rules are triggered at the lower
level of the hierarchy. ICARUS (Langley and Choi 2006)
also represents knowledge of different level of abstraction
by using Horn clauses that define abstract goals. These
clauses are used to learn hierarchies of increasing level of
abstraction in a bottom-up matter by using teleo-reactive
planning techniques. DISCIPLE (Tecuci 1988; Tecuci et al.
2002) uses concept hierarchies to represent knowledge of
different levels of abstraction. In contrast to these cognitive
architectures, MIDCA distinguishes between meta-level and
object-level explicitly in the hierarchy.

Two architectures of note have modeled metacognitive
components explicitly. CLARION (Sun, Zhang, and
Mathews 2006) has a metacognitive module within its struc-
ture, but the mechanism is sub-symbolic as opposed to the
higher-level symbolic representation of MIDCA. The ACT-
R theory was not developed with specific metacognitive ef-
fects in mind, but it has recently modeled metacognitive
tasks called pyramid problems. The control of reasoning is
actually considered to be part of the cognitive function;
whereas monitoring of reasoning is classified as metacogni-
tive (see for example Anderson, Betts, Ferris, and Fincham
2011). In any case, many of the existing cognitive architec-
tures have limitations when modeling metacognitive activity
and have been modified on an as needed basis to fit some
circumstances.

Other cognitive architectures have explored the issue of
explanation. For example, Companions (Forbus, Klenk and
Hinrichs 2009) uses truth-maintenance techniques to build
justifications of the rationale that led to a decision. These

explanations particularly target user interaction settings
where the system must justify the reasons for actions taken.
As discussed earlier in the paper, explanations play a central
role in GDA systems, where the explanation serves as a
bridge between discrepancies that the agent encounters dur-
ing execution and the goal to achieve that addresses those
discrepancies. In MIDCA, the Interpret and Evaluate steps
help it understand the current situation in the environment
(which could include a discrepancy with its own expecta-
tions).

An alternative formalism (Roberts et al. 2015) treats goal
reasoning as goal refinement. Using an extension of the
plan-refinement model of planning, Roberts models goal
reasoning as refinement search over a goal memory M, a set
of goal transition operators R, and a transition function delta
that restricts the applicable operators from R to those pro-
vided by a fundamental goal lifecycle. Roberts proposes a
detailed lifecycle consisting of goal formulation, goal selec-
tion, goal expansion, goal commitment, goal dispatching,
goal monitoring, goal evaluation, goal repair, and goal de-
ferment. Thus many of the differential functionalities in
are distinct and explicit in the goal reasoning cycle. How-
ever the model here tries to distinguish between the planning
and action side of reasoning (and) and the interpretation
and evaluation components inherent in goal reasoning ().

Conclusion
This work makes the following contributions: (1) It presents
a cognitive architecture that includes a metacognitive as
well as cognitive layer to model high-level problem-solving
and comprehension in dynamic environments. (2) It marks
the public release of a documented implementation of the
architecture. Although not as extensive as many existing
cognitive architectures, MIDCA represents a new take to
modeling aspects of autonomy that so far have received little
attention. (3) A novel formalization of goal reasoning using
well-defined AI planning concepts. (4) We introduced a new
interface between MIDCA and physical robot. (5) We pre-
sent empirical work demonstrating the dual functionality be-
tween the object-level and the meta-level.

Future work includes: (1) the important and non-trivial
problem of deciding when to run the metacognitive layer. A
possible way to tackle this problem is by running the meta-
level and the object level concurrently. However, concur-
rency introduces many synchronization issues in order to ef-
fectively modify the cognitive layer without impeding its
performance. (2) Making the best use of the reasoning trace,
especially for long-duration missions producing very long
traces. (3) Exploring which expectations are needed at the
metacognitive level, and how to compute/obtain them.

3717

Acknowledgements
This work was supported in part by ONR on grants N00014-
15-1-2080 and N00014-12-1-0172 and by DARPA on con-
tract W31P4Q-15-C-0071. This work is also supported in
part by the National Science Foundation. We thank the
anonymous reviewers for their comments and suggestions.

References
Aha, D. W.; Cox, M. T.; and Munoz-Avila, H. eds. 2013. Goal
Reasoning: Papers from the ACS workshop, Technical Report CS-
TR-5029, Department of Computer Science, University of Mary-
land, College Park, MD.
Aha, D. W.; Klenk, M.; Munoz-Avila, H.; Ram, A.; and Shapiro,
D. eds. 2010. Goal-driven Autonomy: Notes from the AAAI Work-
shop. Menlo Park, CA: AAAI Press.
Anderson, J. R. 1993. Rules of the Mind. Hillsdale, NJ: LEA.
Anderson, J. R.; Betts, S.; Ferris, J. L.; and Fincham, J. M. 2011.
Cognitive and Metacognitive Activity in Mathematical Problem
Solving: Prefrontal and Parietal patterns. Cognitive, Affective, &
Behavioral Neuroscience 11(1): 52-67.
Anderson, M. L.; Oates, T.; Chong, W.; and Perlis, D. (2006). The
Metacognitive Loop I: Enhancing Reinforcement Learning with
Metacognitive Monitoring and Control for Improved Perturbation
Tolerance. Journal of Experimental and Theoretical Artificial In-
telligence, 18(3), 387-411.
Bengfort, B.; and Cox, M. T. 2015. Interactive Reasoning to Solve
Knowledge Goals. In D. W. Aha (Ed.), Goal Reasoning: Papers
from the ACS Workshop (pp. 10-25). Technical Report GT-IRIM-
CR-2015-001. Atlanta, GA: Georgia Institute of Technology, In-
stitute for Robotics and Intelligent Machines.
Bjork, R. A.; Dunlosky, J.; and Kornell, N. 2013. Self-Regulated
Learning: Beliefs, Techniques, and Illusions. Annual Review of
Psychology 64: 417-444.
Burstein, M. H.; Laddaga, R.; McDonald, D.; Cox, M. T.; Benyo,
B.; Robertson, P.; Hussain, T.; Brinn, M.; and McDermott, D.
2008. POIROT - Integrated Learning of Web Service Procedures.
In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence 1274-1279. Menlo Park, CA: AAAI Press.
Cox, M. T. 2013. Goal-driven Autonomy and Question-Based
Problem Recognition. In Second Annual Conference on Advances
in Cognitive Systems 2013, Poster Collection (pp. 29-45). Palo
Alto, CA: Cognitive Systems Foundation.
Cox, M. T. 2007. Perpetual Self-Aware Cognitive Agents. AI Mag-
azine 28(1): 32.
Cox, M. T.; and Ram, A. 1999. Introspective Multistrategy Learn-
ing: On the Construction of Learning Strategies. Artificial Intelli-
gence 112: 1-55.
Cox, M. T.; and Veloso, M. M. 1998. Goal Transformations in
Continuous Planning. In M. desJardins (Ed.), Proceedings of the
1998 AAAI Fall Symposium on Distributed Continual Planning
(pp. 23-30). Menlo Park, CA: AAAI Press / The MIT Press.
Cox, M. T.; and Zhang, C. 2007. Mixed-Initiative Goal Manipula-
tion. AI Magazine 28(2), 62-73.
Fitzgerald, C. 2013. Developing Baxter. 2013 IEEE Conference on
Technologies for Practical Robot Applications (TePRA): A New

Industrial Robot with Common Sense for U.S. Manufacturing.
doi:10.1109/TePRA.2013.6556344
Forbus, K.; Klenk, M.; and Hinrichs, T. 2009. Companion Cogni-
tive Systems: Design Goals and Lessons Learned so Far. IEEE In-
telligent Systems 24: 36-46.
Ghallab, M., Nau, D., and Traverso, P. 2014. The Actor’s View of
Automated Planning and Acting: A Position Paper. Artificial Intel-
ligence 208: 1-17.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated Planning:
Theory & Practice. San Francisco: Elsevier.
Hawes, N. 2011. A Survey of Motivation Frameworks for Intelli-
gent Systems. Artificial Intelligence, 175(5-6), 1020-1036.
Klenk, M.; Molineaux, M.; and Aha, D. 2013. Goal-Driven Auton-
omy for Responding to Unexpected Events in Strategy Simula-
tions. Computational Intelligence 29(2): 187–206.
Laird, J. E. 2012. The Soar Cognitive Architecture. Cambridge,
MA: MIT Press.
Langley, P.; and Choi, D. 2006. A Unified Cognitive Architecture
for Physical Agents. In Proceedings of the National Conference on
Artificial Intelligence 21(2): 1469. Menlo Park, CA; Cambridge,
MA; London; AAAI Press; MIT Press; 1999.
Maynord, M.; Cox, M. T.; Paisner, M.; and Perlis, D. 2013. Data-
Driven Goal Generation for Integrated Cognitive Systems. In C.
Lebiere & P. S. Rosenbloom (Eds.), Integrated Cognition: Papers
from the 2013 Fall Symposium (pp. 47-54). Technical Report FS-
13-03. Menlo Park, CA: AAAI Press.
Nau, D.; Au, T.; Ilghami, O.; Kuter, U.; Murdock, J.; Wu, D.; and
Yaman, F. 2003. SHOP2: An HTN Planning System. Journal of
Artificial Intelligence Research 20: 379–404.
Paisner, M.; Maynord, M.; Cox, M. T.; and Perlis, D. 2013. Goal-
Driven Autonomy in Dynamic Environments. In D. W. Aha, M. T.
Cox, & H. Munoz-Avila (Eds.), Goal Reasoning: Papers from the
ACS Workshop (pp. 79-94). Technical Report CS-TR-5029. Col-
lege Park, MD: University of Maryland, Department of Computer
Science.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.;
and Ng, A. Y. 2009. ROS: An Open-Source Robot Operating Sys-
tem. ICRA Workshop on Open Source Software 3(3.2): 5.
Roberts, M., Vattam, S., Alford, R., Auslander, B., Apker, T.,
Johnson, B., & Aha, D. W. (2015). Goal Reasoning to Coordinate
Robotic Teams for Disaster Relief. In A. Finzi, F. Ingrand and A.
Orlandini, eds., Proceedings of ICAPS-15 PlanRob Workshop (pp.
127-138).
Scheutz, M.; Harris, J.; and Schemerhorn, P. 2013. Systematic In-
tegration of Cognitive and Robotic Architectures. Advances in
Cognitive Systems 2: 277-296.
Sun, R.; Zhang, X.; and Mathews, R. 2006. Modeling Meta-cogni-
tion in a Cognitive Architecture. Cognitive Systems Research 7(4),
327-338.
Tecuci, G. 1988. DISCIPLE: A Theory, Methodology and System
for Learning Expert Knowledge. Ph.D. diss., Paris 11.
Tecuci, G.; Boicu, M.; Marcu, D.; Stanescu, B.; Boicu, C., and
Comello, J. 2002. Training and Using Disciple Agents: A Case
Study in the Military Center of Gravity Analysis Domain. AI Mag-
azine 23(4): 51.
Vattam, S., Klenk, M., Molineaux, M., and Aha, D. W.
2013. Breadth of Approaches to Goal Reasoning, A Research Sur-
vey, Naval Research Lab Washington DC.

3718

