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Abstract
Complex, real-world domains may not be fully modeled for an agent, especially if the agent has

never operated in the domain before. The agent’s ability to effectively plan and act in such a
domain is influenced by its knowledge of when it can perform specific actions and the effects of
those actions. We describe a novel exploratory planning agent that is capable of learning action
preconditions and effects without expert traces or a given goal. The agent’s architecture allows
it to perform both exploratory actions as well as goal-directed actions, which opens up important
considerations for how exploratory planning and goal planning should be controlled, as well as how
the agent’s behavior should be explained to any teammates it may have. The contributions of this
work include a new representation for contexts called Lifted Linked Clauses, a novel exploration
action selection approach using these clauses, an exploration planner that uses lifted linked clauses
as goals in order to reach new states, and an empirical evaluation in a scenario from an exploration-
focused video game demonstrating that lifted linked clauses improve exploration and action model
learning against non-planning baseline agents.

1. Introduction

Sufficiently complex domains, like those that may be encountered in the real world, are rarely fully
defined and modeled in advance. Even minor changes in the domain, like weather conditions, can
significantly impact how an agent is able to act. For example, the action preconditions for steering
a vehicle in snow differ from the preconditions when the weather is clear. It is unrealistic to assume
that a knowledge engineer would be able to provide the agent with information related to all possible
domain variants. Instead, it would be advantageous for the agent to be able to dynamically learn
how novel domains impact its ability to act and update its action model accordingly.
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We present a self-directed exploratory planning approach to learning action models. Our plan-
ning agent is capable of operating in new domains, even if those domains differ noticeably from pre-
viously encountered domains. We do not assume the agent will have access to an expert-provided
domain model or plan traces. Instead, we consider agents that perform exploration to obtain a col-
lection of action interactions and uses those interactions for learning relational action models (i.e.,
preconditions and effects). We define interactions as triples containing the prior state, action, and
post state.

A core concept for the exploration planning and exploration action selection is the notion of
a Lifted Linked Clause (LLC), which we discuss more formally in Section 3. Briefly, a LLC is a
representation of a context in a general manner. For example, a LLC context might be that an agent
is in front of a closed door. Regardless of the exact state of the environment or exact type of door,
the context of facing a doorway is relevant to which actions the agent can successfully carry out.
We define LLCs as lifted subsets of the predicates in the state space where predicates share at least
one variable across their arguments. LLCs allow us to represent situations in a general way, such
as the agent is in a corner, or the agent is in the same location as an object, without having to refer
to an exact state. LLCs often correspond to one or more preconditions for an action in the agent’s
transition model. By tracking which LLCs are active in the current state, and which actions have
been taken when an LLC is active, the agent can prioritize reaching new states with active LLCs
the agent has not seen before. This enables the agent to reach new states needed to learn a more
complete action model, as our results show in Section 5. It also increases the rate at which the agent
explores the domain.

The vision for the agents described here is not expected to be purely exploratory, but instead we
expect these agents will operate as members of teams where other teammates may request the agents
to pursue provided goals. At any time, the agents may be performing a mixture of exploration (i.e.,
attempting actions in different contexts), learning (i.e., learning action models), and goal pursuit
(i.e., exploiting a learned model to achieve teammate-provided goals).

This work has five primary contributions:

• A formalization of the Lifted Linked Clause (LLC).

• A novel exploratory action selection approach that prioritizes taking actions that have been
attempted the least in the currently active LLCs.

• A novel exploratory planning agent architecture that attempts to reach new states, using LLCs
as goals.

• A formalism describing the algorithms behind the exploratory action selection and exploratory
planning using LLCs.

• An evaluation in a scenario inspired from the Dungeon Crawl Stone Soup video game, in-
cluding a random baseline.

The rest of the paper is organized as follows. In Section 2 we discuss related work, followed
by a formalism of LLCs in Section 3. Section 4 presents the architecture of our agent including the
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algorithms for key components, including the process of inductive learning of action models. We
describe our evaluation in Section 5, results in Section 6 and conclude in Section 7.

2. Related Work

Since we are concerned with both exploration and learning relational action models for planning,
we draw on prior work from both reinforcement learning (RL) and inductive learning. A difference
of this work from RL is that our agent is goal-driven. Given that our agent does not know when
actions can be applied (preconditions) and the changes made to the state (effects), we draw on ideas
from RL to determine what actions to take in order to obtain enough examples for learning action
models.

Hester and Stone (2017) discuss multiple exploration reward schemes and reward metrics in
intrinsically motivated RL systems. They present two exploration-based intrinsic reward schemes
that seek to take the most novel action. Briefly, action novelty takes into account the difference of
the current state compared to the most recent state in which an action was executed as well as how
uncertain the agents predictions for the state reached after executing the action.

Sequeira, Melo, and Paiva (2011) discuss emotions as a structure for intrinsic motivations which
are balanced against extrinsic motivations. Numeric intrinisic motivations are based on appraisal di-
mensions including novelty, motivation, control, and valence. For example, novelty is proportional
to the number of times an action has been used in a given situation before. The use of contexts in
our agent is an attempt to reach a similar notion of novelty: taking actions that have not been tried in
similar situations. Our agent prioritizes first to take actions that have been taken the least among all
the currently active contexts (LLCs, see Section 3) and when all actions have been tried, the agent
then prioritizes planning to reach states containing new contexts.

Inductive learning approaches that use heuristics have been effective (Vere, 1980; Hayes-Roth
& McDermott, 1978; Watanabe & Rendell, 1990) but may not apply to all learning problems. FOIL
(Quinlan, 1990) is a greedy algorithm that, like the heuristic approaches just mentioned, requires
both positive and negative examples for training. Wang (1995) developed a system called OB-
SERVER that uses expert traces of actions and a simulator for running practice problems. OB-
SERVER does not need approximate action models; it learns action models from scratch that are as
effective as human-expert coded action models assuming expert traces are available. Our learning
problem is similar to those of OBSERVER and FOIL, hence our use of an inductive learning ap-
proach. There has been recent work on learning action models using genetic algorithms (Kučera &
Barták, 2018) with example plans. The main difference in this work is that we focus on obtaining
good examples for learning unknown action models, rather than on the learning algorithm itself. A
benefit of the approach we describe is relaxing the need for expert traces of high quality plans.

To perform learning we use the Inductive Learning of Answer Set Programs (ILASP) system
(Law et al., 2015). ILASP is a powerful inductive learning system that combines brave and cautious
induction to learn answer set programs.

To deal with incompleteness of action models, Weber and Bryce (2011) give a planning algo-
rithm that reasons about the action model’s incompleteness in order to avoid failure during planning.
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Incorporating such a technique into our agent for the goal-driven planner would allow the agent to
perform planning prior to the learning of a complete action model (which may not ever happen).

Human-agent teaming, and specifically the need for explanation in such teams, has been iden-
tified as a potential challenge problem for Goal Reasoning (Molineaux et al., 2018). Their work
presents a model for how explanations can be exchanged among teammates and used in decision
making, and presents several common instantiations of the model. Our work falls under the Single
Supervisor instantiation, where an agent has a supervisor that may make requests of it, and it may
need to explain its reasoning or behavior.

Existing applications of explanation to Goal Reasoning have focused primarily on internal ex-
planations (Aamodt, 1993) (i.e., for the benefit of the agent itself) rather than external explanations
(i.e., for the benefit of an external user). DiscoverHistory (Molineaux et al., 2012) generates expla-
nations for why observed domain transitions occurred. More specifically, it generates explanations
that contain the external actions (i.e., of other agents) and exogenous event that are most likely to
have resulted in the changes in the domain. In a human-robot teaming domain, such explanations
have been used to allow a Goal Reasoning agent to determine the plans and goals of other agents,
and reason over its own goals (Gillespie et al., 2015). However, even though these explanations are
used by an agent that is a member of a team, they are only used internally and never provided to any
teammates.

3. Lifted Linked Clause (LLC) Formalism

The approaches presented here use LLCs to guide the exploration process. A LLC c is a first-order
relational conjunct c1 ∧ c2 ∧ . . .∧ cn that refers to one or more existentially quantified variables and
is satisfied by some states S′ ⊂ S. We describe a LLC c having n terms as being of size n (e.g.
Figure 3 shows LLCs of size n = 3, 4, 5). LLC terms may include the following: finite relations
over objects, finite equalities and inequalities between integers and functions over objects, and the
infinite “successor" relation that describes consecutive integers. An upper bound1 C on the number
of possible LLCs for a given size n is given by

C =

(
M !× 2× |P |

n

)
where M is the maximum number of arguments for a single predicate p ∈ P . The 2 is because each
predicate can be negated. We define the size n of a LLC as the number of relations (conditions) in
the clause. In a LLC with multiple predicates, each predicate must refer to at least one existentially
quantified variable that is also present in another term; this requirement means that no context of
size n is semantically equivalent to the conjunction of two or more smaller contexts of size < n.
For example, in the LLC of Figure 3a, T1 is such an existentially quantified variable. We describe
the set of all legal LLCs for a domain Σ up to a size n as clauses(Σ, n).

The constraint that each predicate must refer to at least one existentially quantified variable is
hypothesized to reduce the space of potential LLCs and follows from an assumption that useful

1. This upper bound assumes all predicates p ∈ P have a number of arguments equal to the maximum number of
arguments M , however usually some p have less than M arguments.
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contexts will be defined by predicates that are relationally connected in some way, rather than any
arbitrary collection of predicates. We leave for future work additional experiments to evaluate
different methods for constraining the LLC space.

We say that an LLC is active if it unifies with the current state s (more than one unification
is possible; as long as there is at least one unification, the LLC is considered active). The agent
maintains LtoA, a count of the number of times each LLC action-pair 〈c, a〉 has occurred in the
Interaction History, where L refers to the set of LLCs up to size n, A refers to the set of actions, and
c ∈ L. This is given by the following function:

examples(c, a) =

∣∣∣∣{〈si, ai, si+1〉 ∈ I | c |= si ∧ ai = a}
∣∣∣∣

Given a planning domain, it is possible to generate all LLCs up to a certain size (in our exper-
iments we choose an LLC size of 2). Although the number of LLCs grows exponentially with n,
even small LLCs of size 2 can be useful, as shown in our evaluation in Section 5.

4. Agent Architecture for Self-Directed Exploration

We now describe the agent architecture for our self-directed agent. We adopt the planning formalism
from Ghallab et al. (2004) with a state transition system Σ = (S,A,E, γ) where S is the set of all
states, A is the set of actions, E is the set of events, and γ is the state-transition function. The
architecture for our exploratory planning agent is shown in Figure 1.

This agent assumes a relational representation of states, observations, and actions are provided
to it, but not the transition function. The agent attempts to learn the transition function over time.

Figure 1: Architecture for our exploratory planning agent

We separate the functionality of this agent into three submodules. The exploration planner
is responsible for taking actions to obtain new information with which to update the action model,
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Algorithm 1 Controller and Action Selection Process
1: procedure CONTROLLER()
2: Global: s,LtoA
3: while running do
4: s← observe() . Obtain current state
5: a← ActionSelection() . Choose next action
6:

7: for c in L do
8: if active(c, s) then
9: LtoA[c][a].increment() . Record that this action was taken in this LLC c

10: execute(a) . Execute action a
11: procedure ACTIONSELECTION()
12: Global: s, π,LtoA
13: if π.length() > 0 then
14: return π.pop() . Retrieve next action of plan
15: lta← leastTakenActions(s,LtoA) . Retrieve set of actions taken the least
16: in the currently active contexts
17: if lta.length() > 0 then
18: return random.choice(lta) . Return a least taken action
19: else
20: π ← explorationP lanner() . Call planning
21: if π.length() > 0 then
22: return π.pop() . Retrieve next action of plan
23: else
24: return randomAction() . Take a random action

the transition model learner, responsible for updating the agent’s model of the world, and the
controller, responsible for determining when to perform learning (updating the model), planning,
or if necessary, take a random action. Each submodule is designed in a domain-independent fashion,
with data represented in a relational fashion. We now describe the current design of each submodule.

4.1 Controller

At each time step, the controller receives a state st from the domain, then generates a new action
at to act in the domain. The controller and action selection procedures are given in Algorithm 1.
Lines 3 to 10 describe a common runtime loop where the agent observes the current state (Line 4)
and ultimately executes an action (Line 10), and continues indefinitely (Line 3). The exploration
approaches (action selection in Algorithm 2 and planning in Algorithm 3) must know which actions
have been executed in which contexts. This is recorded just before an action is executed by the
controller in lines 7-9. The controller calls the action selection function in Line 5 which first checks
if there are remaining actions in a plan to be executed, and if so, executes the next action (Lines 13-
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14). If there are no remaining actions of the plan then the agent may either not be able to generate
a plan or finds itself in a new state worth exploring. Line 15 retrieves all actions that have not been
taken in currently active contexts (see Algorithm 2 for the definition of the leastTakenActions()
procedure). If the current state is fully explored (in this case the condition on line 17 will be false)
there will be no available actions to take, so the agent proceeds to attempt to generate a new plan
(line 20) and execute the first action (lines 21-22). Finally, in some situations, the agent must be
forced to take a purely random action which occurs on line 24.

The behavior that results for an agent in a new environment with no action model is that it takes
random actions until it has learned a partial model. With each successful action taken, the agent
finds itself in a different state than previously, and may have actions to take via exploration (lines
15-18). Eventually the agent’s model will have learned enough to be able to generate a plan to reach
a state with a context that has never been active before. While the plan may be incorrect, in the
worst case it will generate new examples for learning, and in the best case it will enable the agent
to reach a new state (and new context). From on observer’s perspective, by attempting a plan, the
agent goes from flailing randomly to directed movement towards a new state.

4.2 Exploration-based Action Selection using LLCs (part of Controller)

The exploration-based action selection is shown in Algorithm 2. When planning is not possible
(such as when the agent may have no model of its action’s preconditions or effects) or the agent
has found itself in a new situation, this algorithm chooses actions that have not yet been taken in
these contexts. Actions are prioritized by the number of contexts they have not been taken in. The
algorithm begins by constructing a dictionary tracking the number of active contexts for each action
taken (line 3). Lines 4 through 10 iterate over contexts and actions while recording the number of
contexts the action has not been taken in. Line 11 creates the variable leastActions which keeps
track of the actions taken least in currently active contexts. Line 12 introduces a variable tracking
the maximum number of contexts an action has not been tried in. This is used to ensure that if there
is a tie among actions for number of unknown contexts, then all actions that tie will be returned.
Lines 14 through 21 iterate over the actions building the list of actions that have been tried the least.
Finally, the actions are return on line 22.

Note that this algorithm is not guaranteed to return a non-empty set of actions. This happens
when the agent has fully explored (i.e. executed every action in all of the currently active contexts)
the current state. When this occurs the controller performs planning to reach a new state with
contexts that have not been fully explored.

4.3 Exploration Planner

Given an initial state s, an interaction history (〈s0, a0, s1〉, 〈s1, a1, s2〉, . . .), a domain model of the
transition function λ, and a goal LLC g, the exploration planner finds a plan π to reach any state
that satisfies the goal.

The role of the Exploration Planner is to obtain novel interactions. An interaction is defined as
a triple 〈si, ai, si+1〉 where si ∈ S is the previous state before taking action ai ∈ A and si+1 ∈ S
is the state after ai is executed. As the agent acts in the domain all interactions are recorded and
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Algorithm 2 Exploration-based Action Selection using LLCs

1: procedure leastTakenActions()
2: Global: π, s,L,LtoA
3: actionTakenCounts← Dict()
4: for c in L do
5: if active(c, s) then
6: for a in A do
7: if a /∈actionTakenCounts then
8: actionTakenCounts[a]← 0 . Start tracking this action
9: if LtoA[c][a] == 0 then . True if a never taken when c is active

10: actionTakenCounts[a].increment()

11: leastActions← []
12: max← 0 . Score enables tracking number of contexts
13: that are active and compatible per action
14: for a in A do
15: if a ∈ actionTakenCounts and actionTakenCounts[a] 6= 0 then
16: if actionTakenCounts[a] > max then
17: max = actionTakenCounts[a]
18: leastActions← [a] . Reset leastActions and insert this action
19:

20: if actionTakenCounts[a] == max then
21: leastActions.append(a)

22: return leastActions

added to the Interaction History I . To determine the next action, the Exploration Planner chooses
the action a that minimizes examples(c, a) for all active legal contexts of a size less than or equal
to n:

arg min
a∈A

min
c∈contexts(Σ,n)

examples(c, a)

We collect complete states from the domain after each action is executed. The Interaction
History provides training examples that are later used by the Transition Model Learner to learn
a Domain Model. Thus, by guiding the agent’s actions, the Exploration Planner can impact which
interactions are stored in the Interaction History and used for learning.

4.4 Transition Model Learner

We are interested in agents that can learn their action model online while operating in a new domain.
For our Transition Model Learner component, we assume that action predicates and argument types
are known to the agent a priori (i.e., provided as expert domain knowledge) as well as a model of
the domain that includes objects, types of these objects, and predicates for these objects. Currently
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we assume the world is fully observable and deterministic; we will relax these constraints in future
work.

As we discussed previously, every action the agent takes is recorded into a triple 〈si, ai, si+1〉
and stored in the Interaction History, which can be used later for learning. We have taken an induc-
tive learning approach, inspired by prior work on learning action models. The primary difference in
our work is that the agent is not provided with expert traces of action sequences and instead directs
its own behavior to acquire examples of executing actions.

For the inductive learning algorithm, we use the Inductive Learning of Answer Set Programs
(ILASP) system (Law et al., 2015) to learn rules that act as preconditions of individual actions. We
assume that if an action did not change the state of the world, then it failed and use that assumption
to label interactions as positive interactions that succeeded (si 6= si+1 after performing ai) or
negative interactions that failed (si = si+1 after performing ai). Additionally, ILASP is given
inductive biases describing the types of predicates that should be considered in the body (in the
form of #modeb declarations), which are translated from the predicates and arguments types from
our domain model of our scenarios used in the evaluation.

An example for a precondition rule generated by the ILASP system is shown in Figure 2. This
rule encodes the learned preconditions for the southeast move action for a grid-world domain. The
various values used in the rule are:

• X: The X coordinate of the tile the agent is currently located in

• Y: The Y coordinate of the tile the agent is currently located in

• X2: The X coordinate of destination tile

• Y2: The X coordinate of destination tile

In our current setup, we support learning the eight cardinal directions and the only change in the
domain that occurs from executing actions is the agent’s location or opening / closing a door.

Before the agent performs planning, the agent makes an external call to the ILASP system to
perform learning on all actions that have newly recorded interactions. External calls to ILASP may
take up to a few hours to complete, so limiting the number of calls to the ILASP planner should
be prioritized. For future work there are a number of ways to reduce ILASP run time including se-
lecting only a subset of interactions for ILASP to learn over. Currently, every interaction, including
hundreds of failed interactions because of invalid arguments (i.e. the agent attempts to move to a
non-adjacent tile) are given to ILASP. Additionally, ILASP is under active development and future
versions may significantly speed up run time.

The Transition Model Learner uses an inductive learning procedure to learn the preconditions
of each of the agent’s actions (i.e., update the Domain Model with the actions’ preconditions). An

southeast(X, Y) :- agentat(X2, Y2), north(Y2, Y), west(X2, X),
not wall(X, Y), not cdoor(X, Y).

Figure 2: Learned rule from ILASP for the southeast move action in a tile grid world environment.
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Algorithm 3 Exploration-based Planning using LLCs as Goals

1: procedure LLC-PLANNER

2: Global: s,A, I,LtoA
3: A← learnActionModels(I) . Perform learning to ensure up-to-date action models
4: Gdone ← [ ] . Store goals already attempted
5: do
6: Gremaining, Gdone ← contextsWithLeastActions(LtoA,Gdone) . Retrieve LLCs
7: for g in Gremaining do
8: π ←ASP-Planner(A, s, g) . Call planner
9: if π.length() > 0 then

10: return π . Return first plan found
11: while Gremaining.length() > 0
12: return [ ]

example of the learned preconditions for the southeast move action from a tile grid world explo-
ration domain is shown in Figure 2. The learning component is only concerned with learning action
preconditions. Once preconditions are learned, the effects of the actions can be computed by finding
the difference between si+1 and si and unifying the differences so that the argument variables in the
effects clause are consistent with the variables in the preconditions clause.

The intuition behind using contexts for exploration is that the same action needs to be executed
in multiple contexts in order to learn the complete precondition rule, and also effects, for that action.
Consider the preconditions for southeast shown in Figure 2. In order for the agent to learn the
condition not wall(V0), it needs to execute the action in a context where there is a wall southeast of
the agent, thereby preventing the action from succeeding. This produces a negative interaction. To
learn positive interactions, the agent must execute the action in contexts where there is not a wall in
a cell to the southeast. These positive interactions enable learning the other preconditions besides
not wall(V0).

{agent-at(T1), at(T1,X1,Y1), at(T2,X2,Y2)}
(a) LLC of size 3

{agent-at(T1), at(T1,X1,Y1), at(T2,X2,Y2), not wall(T2)}
(b) LLC of size 4

{agent-at(T1), at(T1,X1,Y1), at(T2,X2,Y2), not wall(T2), X2 = X1-1}
(c) LLC of size 5

Figure 3: Example Lifted Linked Clauses of varying sizes
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(a) Graphical Representation

(define (problem dcss)
(:domain dcss)
(:objects

x1 x2 x3 x4 x5 x6 x7 x8 x9 - xcoord
y1 y2 y3 y4 y5 - ycoord)

(:init
(agentat x1 y1) (wall x1 y2)
(north y2 y1) (wall x2 y2)
(north y3 y2) (wall x3 y2)
(north y4 y3) (wall x4 y2)
(north y5 y4) (wall x2 y4)
(west x2 x1) (wall x3 y4)
(west x3 x2) (wall x4 y4)
(west x4 x3) (wall x5 y4)
(west x5 x4) (wall x6 y1)
(west x6 x5) (wall x6 y2)
(west x7 x6) (wall x6 y3)
(west x8 x7) (wall x6 y4)
(west x9 x8) (cdoor x8 y4)))

(b) PDDL Representation

Figure 4: Scenario 1 Visualization and PDDL Representation

5. Evaluation

We perform an evaluation of our self-directed planning agent in an ablation study in a scenario in-
spired from the exploration-based genre of rogue-like video games. In these games humans must
figure out when (preconditions) and how (effects) actions change the game state to explore an un-
known environment that is partially observable and open. Figure 4 depicts both a graphic visu-
alization and a relational representation of this scenario. We use the Planning Domain Definition
Language (PDDL) to represent the state and actions (McDermott et al., 1998). The PDDL repre-
sentation of each scenario shown is exactly what is given to our agents as the starting state. Agents
are given the actions they can take and typed arguments for these actions without any preconditions
or effects.

The scenario here is static and fully observable. This allows us to label each interaction 〈si, ai, si+1〉
as positive if si 6= si+1 and negative if si = si+1. We leave evaluations in dynamic domains for
future work. Briefly, a challenge in a dynamic environment (which is the case for most rogue-like
video games) is to identify whether a change in the environment can be attributed to the agent or
an external actor. Only in the cases when a change in state occurs and is likely to be caused by the
agent should the interaction be considered positive.
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Each agent has 24 possible actions consisting of eight movement actions, eight open
door actions and eight close door actions. The eight variations of each action type (move-
ment, open door, close door) is because each action is for one of the eight cardinal direc-
tions: N, S, E, W, NE, NW, SE, SW.

5.1 Exploration Progress Metric

We measure how much of the scenario each agent has explored by counting the number
of unique tiles they visited. Visiting more unique tiles means that an agent has explored
more of the domain and is a partial indicator of the likelihood of that agent’s model being
accurate, since without visiting certain tiles, some actions can never be accurately learned
(i.e. visiting adjacent tiles to the closed door tile are needed to learn the open-door action).
Scenario 1 has 33 unique tiles the agent can occupy. These include the closed door tile
since if the door is open, the agent can then move into that tile.

5.2 Learning Accuracy Metric

Since the agents are learning action preconditions from scratch, we develop a metric that
compares the learned action models from perfect action models in such a way that the
rules do not need to be equivalent regarding the logical representation. Instead, we test
each learned precondition for an action against perfect preconditions on a number of test
states and compare whether the output of the learned rule (i.e. whether the action can be
taken in the test state) is the same as the perfect rule. In this case the output is either that
the preconditions hold in which case the action can be taken or the preconditions do not
hold and the action will fail to change the state. The perfect action models were hand
authored: movement actions contain preconditions to ensure there is a destination cell in
that direction and that a wall is not in the destination, closing and opening door actions
contain the preconditions there is a destination cell and that there is an open or closed door
in the destination, respectively.

For this evaluation we used 16 expert authored test states. Eight of these states involved
a closed door and eight involved an open door. In all test states some movement actions
are possible while others are not. The closed door test states are shown in Figure 5. W
represents a wall, A represents the agent’s location, and CD represents a tile with a closed
door. Empty tiles are spaces that the agent can move into. An agent may move into a door
tile only if the door is open.

For example, when applying perfect action preconditions on this state the agent is able
to successfully execute the following actions: move south, move east, and close door south-
east. All other actions when applied to this state will fail. Then we apply the learned pre-
conditions for each action. We use the results (i.e. whether or not the perfect/learned rule
can be executed in that state) from the test states to calculate precision, recall, and F1 scores
between 0 and 100% for each actions’ learned preconditions. The benefit of this metric is
that we can measure learning performance irrespective of the rule’s representation.
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Figure 5: Closed Door Test States Used for Learning Accuracy Metric

5.3 Hypotheses

Our evaluation aims to test whether these agents can learn action preconditions and effects
from scratch when situated in a previously unseen domain and if there is a benefit to our
exploration planner using LLCs. We hypothesize that:

H1 All agents will be able to learn some action preconditions from collected interactions.

H2 The LLC one-step action selection agent will learn better preconditions for more ac-
tions than a baseline agent taking only random actions.

H3 The LLC one-step action selection agent will explore more of its environment than the
random baseline agent.

H4 The LLC exploratory planning agent will learn better preconditions for more actions
than both the one-step LLC action selection agent and the random baseline agent.

H5 The LLC exploratory planning agent will explore more of its environment than both
the one-step LLC action selection agent and the random baseline agent.

H1 relates to our claim that the approaches described here can be used to learn action
models by collecting interactions, even if the agent is a random baseline. The rational
behind H2 and H3 is that because the one-step LLC agent maintains information about
which actions have been taken in which contexts (LLCs) and prioritizes taking actions
that have never been taken in particular contexts, it will obtain the needed interactions for
learning an action quicker than the random baseline. We expect H4 and H5 to be true
because the agent will eventually choose to plan to reach new states, and this planning will
be more efficient than only considering one action ahead.
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Figure 6: Exploration Progress Per Approach for Scenario 1

6. Results

Our results show the performance of three agents (random, one-step LLC, and planning
LLC) in a scenario in Figure 4. The performance of the agents displayed in Figure 6 are
averaged over three runs per agent for 4,000 actions. In each run the agent starts with no
preconditions or effects for any of its actions. That is, each run is independent and no
knowledge is maintained between runs.

6.1 Scenario 1 Results

The graph in Figure 6 shows the exploration progress of the agent per action executed.
Solid lines are composed of the average data point over three runs, where each data point
represents the cumulative total number of unique tiles visited by that agent since the begin-
ning of the run. The shaded area shows the maximum and minimum values between all the
runs. The larger the shaded area, the more variance there is among the runs.

The random agent explores the slowest initially (within the first 500 actions) and man-
ages to perform as well as the explore local agent (using one-step LLC action selection)
until about 2500 actions. Then the explore local agent explores slightly more than the
random agent. This shows that our hypothesis H3 is true in Scenario 1 although only
minimally.

The planning agent in this figure has a slight delay in number of tiles executed but then
quickly explores the environment much faster than the other two agents. Even though there
is fairly high variance between the runs, even the worst case is still almost entirely better
than the other two agents, and this variance reduces by the time the agent has executed
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Random Explore Planning
P R F1 P R F1 P R F1

move_w 88 100 93 88 100 93 100 100 100
move_e 94 100 97 94 100 97 100 100 100
move_n 0 0 0 67 29 41 100 100 100
move_s 0 0 0 62 67 65 100 100 100
move_nw 33 23 27 67 46 54 65 52 58
move_ne 0 0 0 0 0 0 98 77 86
move_sw 0 0 0 0 0 0 56 50 53
move_se 31 33 32 67 46 54 60 48 53
close_door_w 0 0 0 0 0 0 33 33 33
close_door_e 0 0 0 0 0 0 67 67 67
close_door_n 0 0 0 0 0 0 0 0 0
close_door_s 0 0 0 0 0 0 67 67 67
close_door_nw 0 0 0 0 0 0 0 0 0
close_door_ne 0 0 0 0 0 0 0 0 0
close_door_sw 0 0 0 0 0 0 0 0 0
close_door_se 0 0 0 0 0 0 0 0 0
open_door_w 0 0 0 0 0 0 0 0 0
open_door_e 0 0 0 0 0 0 33 33 33
open_door_n 0 0 0 0 0 0 0 0 0
open_door_s 0 0 0 0 0 0 96 100 98
open_door_nw 0 0 0 0 0 0 0 0 0
open_door_ne 0 0 0 0 0 0 0 0 0
open_door_sw 0 0 0 0 0 0 0 0 0
open_door_se 0 0 0 0 0 0 0 0 0

Table 1: Precision, Recall and F1 Score per action model learned by each approach in Scenario 1

approximately 3000 actions (shown by the shaded area reducing in size). This result shows
that our hypothesis H5 is significantly true in Scenario 1. Finally, there are 33 possible tiles
the agents’ could visit in Scenario 1, which shows that the planning agent almost explores
every location using the same number of actions it takes for the explore local and random
agents to visit 7 to 5 tiles respectively.

Turning to Table 1 we see that the random agent was able to learn partial models for
four actions, the explore local agent learned partial models for 6 actions, and the planning
agent learned models for 13 actions, four of which were fully correct models. The explore
local agent was able to learn 2 more models than the random agent, and learned more
correct models in all cases where random learned a partial model of the same action, which
verifies hypothesis H2 in Scenario 1. Hypothesis H4 is almost entirely true for Scenario
1, except when regarding the move southeast action, where the explore agent was able to

15



D. DANNENHAUER, M. FLOYD, N. REIFSNYDER, M. MOLINEAUX, D. AHA

achieve an F1 score above the planning agent by 1%. This is due to the explore agent
learning a rule with higher precision than the rule learned by the planning agent. Since
the planning agent learned significantly more action models than explore, we conclude that
this shows hypothesis H4 to be true in general.

7. Conclusions

We introduce a novel formalism of a situational context which we call a Lifted Linked
Clause. LLCs can be used as goals by an agent to learn a more accurate action model by
attempting to generate a plan to reach a state with a LLC that has never been seen before.
Our evaluation shows that an agent can more efficiently explore a space using LLCs as
goals than without such a planning mechanism (i.e. against a non-planning explorer or a
random agent). We show that both exploration of the state space and learning accuracy are
improved by using such an approach. These agents are able to learn in a single run as soon
as they gather a small number (two or more) examples per action for learning. A primary
motivation for learning such relational models is that it would enable increased explain-
ability for autonomous planning and acting agents.
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