
Abstract 

Goal reasoning agents can solve novel problems by 
detecting a discrepancy between expectations and 
observations; generating explanations about 
plausible causes for the anomaly (i.e., the 
discrepancy); and formulating goals to remove the 
cause. This paper considers the broader challenge of 
discerning the difference between benign anomalies 
and those that represent an actual problem for an 
agent. Furthermore, we call into question the very 
concept of a problem itself. This paper formulates a 
new problem representation tied to the challenge 
above. While doing so, this paper discusses the role 
of explanatory hypotheses and goal formulation 
under these circumstances and illustrates them via 
an example in the maritime domain. In support of 
our ideas, we show the empirical difference between 
a standard planning agent, agents that detect 
anomalies, and those that recognize problems. 

1 Introduction 
An intelligent autonomous agent in a partially observable 
world should formulate its own goals, make plans to achieve 
those goals and execute those plans to achieve its mission. 
[Paisner et al. 2014] states that an agent can formulate its own 
goals from a discrepancy or anomaly by generating a 
hypothesis that explains that discrepancy, and generating new 
goals that respond to that hypothesis in the blocks world 
domain. However, many discrepancies that arise in the real 
world do not represents a problem to an agent’s mission or 
activity. For example, the playing of loud music may or may 
not be a problem for a roommate. If the roommate is 
preparing for an upcoming exam this is a problem; if, on the 
other hand, she is doing her laundry, this is not a problem.  
More generally, an agent does not need to respond to every 
observed anomaly; they should be capable of distinguishing 
between those that signal a problem and those that do not. 
 The Goal Driven Autonomy (GDA) [Cox, 2007] [Munoz-
Avila et al., 2010] [Molineaux et al., 2010] approach to 
agency constitutes a sufficient approach for an autonomous 
agent to respond to discrepancies, but much of the existing 
research does not formally address the issue of which 
anomalies are worthy of being considered problems. In this 

paper, we consider the task of recognizing whether an 
anomaly should constitute a problem for the agent. Perfoming 
this task efficiently will improve both the efficiency and 
robustness of the agent. We use the term problem in this 
paper to refer to discrepancies that require a response in order 
to meet the agent’s objectives. [Cox, 2013] states that GDA 
is required in order for the agent to not just plan, act and 
perceive, but also to comprehend so that it is capable of 
recognizing threats to its current goals, plans and intentions. 
The author also claims that this will result in autonomous 
agents which are more sensitive and flexible to the 
environment and he tries to achieve this flexibility through 
goal insertion, in which the agent generates and inserts a new 
goal into its planning process with the help of explanations as 
outlined in the next section. 

In the remainder of this paper, we present a fomalism for 
the problem recognition task and demonstrate it via an 
example in an uncertain, dynamic environment. We will also 
discuss  a solution to this task that modifies the goal 
generation step of a typical GDA agent, via the use of the 
Metacognitive Integrated Dual-Cycle Architecture (MIDCA) 
and the Meta-AQUA explanatory system. 

The paper continues as follows. Section 2 defines the 
problem recognition task and introduces a running example 
in the form of mine clearance in the maritime Defense 
domain. Section 3 describes explanation patterns (XP) and 
their role in understanding problems. Section 4 discusses the 
implementation of a simulation of the mine clearance 
operation that involves the use of an autonomous underwater 
vehicle (AUV). It also details the application of the problem 
formalism and explanations to identify and respond to 
problems. This is followed by the evaluation of GDA agents 
and the presentation of the results in Section 5. Related 
research is discussed in Section 6. Finally, some concluding 
remarks are made in Section 7, along with discussion abput 
some ideas for future research. 

2 Problem Recognition 
An anomaly occurs when the expected state of the agent does 
not match its current observed state, but a problem only 
occurs when the above anomaly needs to be addressed. As 
such, problem recognition refers to reasoning about the 
anomaly and deciding whether it is something that the agent 
needs to deal with. There might be different types of 
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problems and also different ways to recognize and address 
them, one such problem being the planning problem. A 
classical planning domain is defined [Ghallab, et al., 2004] as 
a finite state-transition system in which each state  𝑠 ∈ 𝑆 is 
represented by a finite set of ground atoms. A planning 
operator is a triple 𝑜 = (ℎ𝑒𝑎𝑑(𝑜), 𝑝𝑟𝑒(𝑜), 𝑒𝑓𝑓(𝑜)), where 
pre(o) and eff(o) are preconditions and effects. Each action, 
𝑎 ∈  𝐴 is a ground instance of some operator o. An action is 
executable in a state s if 𝑠 ⊨ 𝑝𝑟𝑒(𝑎). 

For a classical planning domain, the state-transition system 
is a tuple  =  (𝑆, 𝐴, 𝛾), where S is the set of all states, and A 
is the set of all actions as above. In addition, γ is a state 
transition function  𝛾 ∶ 𝑆 × 𝐴 → 𝑆 that returns the resulting 
state of an executed action given thes current state i.e., 
𝛾(𝑠, 𝑎) → s′. 

A classical planning problem is a triple 𝑃 = (, 𝑠଴, 𝑔), 
where  is a state transition system, s0 is the initial state, 
and the goal state 𝑔 ⊂ 𝐺 is a conjunction of first-order 
literals. A state sg satisfies a goal if 𝑠௚ ⊨ g; in this situation 
we refer to sg as a goal state. A plan π ϵ П represents a solution 
to P if it consists of a sequence of plan steps 𝑎1,𝑎2,… 𝑎n that 
incrementally changes the world, starting from the initial 
state s0 and ending in a goal state. That is, it is a solution if 
𝛾(. . . 𝛾(𝛾(𝑠0, 𝑎1), 𝑎2)…, 𝑎n) ⊨ g. We say that the state 
transition function takes the initial state and the plan to 
achieve the current goal and results in the goal state of the 
agent when the goal is satisfied. We represent the above as 
(𝛾(𝜋௚௖ , 𝑠଴) = 𝑠௚) ⊨g. It is a more generic way of 
representing the above solution. 

The classical planning definition was extended by Cox 
[2017] to fit in the GDA context. According to this extension, 
the planning problem is a 6-tuple, 𝑃gda = (, 𝑠𝑐, 𝑔𝑐, 𝑠𝑒, Ĝ, ), 
where  is a state-transition function, 𝑠𝑐 is the observed state, 
𝑔𝑐 is the current goal, 𝑠𝑒 is the expected state, Ĝ is the set of 
goals of the agent, and  is the goal transformation function, 
which helps the agent to change its current goal to some other 
goal for various reasons, for example, an insufficient amount 
of resources being available to achieve the current goal. In 
this paper, we formulate a new definition of the planning 
problem by modifying the above definition to suit our needs. 

When an agent is working on its current goal, 𝑔𝑐, and a 
problem occurs, we refer to the existing plan for achieving 
that goal as 𝜋𝑔c . One subsequence of that plan, 𝜋c, has already 
been executed, and 𝜋r refers to the rest of the existing plan, 
which has not been executed. These three plans must always 
satisfy the relationship 𝜋𝑔c = 𝜋c . 𝜋r, where ‘.’ denotes the 
concatenation of the plans. 

The current state sc of the agent from the above two 
definitions of the plan and the state transition function can be 
defined as sc = 𝛾(𝜋c, s0). The expected state se of the agent 
when the current observed and expected states do not match 
should also be included within the problem definition in order 
to determine a problem when any discrepancy occurs in the 
real world. 

The history of what the agent has been doing is also 
important to determine the reason for the cause of the 
problem. Hence, the history of the agent is defined to be Hc 
= (𝜋c, gc). 

We also use background knowledge 𝐵𝑘, for the purposes 
of the paper, to determine if a particular anomaly is a problem 
or not. Therefore, in order to provide the agent with the 
necessary background information we provide it with a state-
transition system  as in classical planning and the goal 
transformation function . The goal transformation system 
allows the agent to change its current goal to a different goal 
for various reasons. Adopting the classical definition of  
and the definition of  given in Cox [2017], we represent 
the background as 𝐵𝑘 = (, ). 

Once an agent acquires all the above information it now 
needs to explain whether a particular anomaly is a problem 
or not. Such an explanation 𝜒 should aid in determining the 
problem, as well as aid in generating a new goal (𝑔n). 
Explanations are elaborated on in Section 3. 

Putting all of these together, we define the planning 
problem as 𝑃gda = (𝑠𝑐 , Bk , 𝑠𝑒 , Hc, 𝜋r, 𝜒, 𝑔n),   where 𝑠𝑐 is the 
current state of the agent, Bk is the background knowledge of 
the agent, 𝑠𝑒 is the expected state, Hc is the history of the 
agent, 𝜋r is the remaining plan, 𝜒 is the explanation of why 
the anomaly encountered is a problem for the agent and 𝑔n is 
the newly generated goal. 

2.1 Example Situation – Naval Mine Clearance 
In order to illustrate these and other concepts as they are 
developed in this paper and to assess the performance of the 
resulting GDA agents, it will be useful to consider them in 
the context of the following concrete example from the 
maritime Defense domain. 

To prepare a harbor for use during maritime operations, it 
is essential to conduct mine clearance activities to ensure that 
ships can operate safely as they transit between the open sea 
and the port in the harbor. As searching and clearing mines in 
the entire harbor is likely to be a time-consuming and 
expensive undertaking, a network of safe shipping lanes is 
typically established instead to reduce the size of the area 
within the harbor which needs to demined. Such a system is 
known as a Q-route [Li, 2009]. 

In our example, we assume that the Q-route consists of a 
single shipping lane and that both the mine detection and 
clearance are performed by an AUV which is controlled by a 
GDA agent. Furthermore, previous reconnaissance of the 
proposed Q-route identified two areas – green area 1 (GA1) 
and green area 2 (GA2) – within the Q-route where it is 
expected the only mines will be. As such, any mines 
encountered which do not lie within GA1 or GA2 constitute 
anomalies, but only the anomolous mines within the Q-route 
are classified as problems because of the hazard that they 
pose to shipping. It is the role of the agent to determine how 
to respond to these anomalous mines in each instance. 

3 Explanation and Goal Formulation 
Whenever some discrepancy between the expectations and 
the observed state occurs, explanations help the agent 
understand the discrepancy and formulate new goals [Paisner 
et al. 2014]. In this work, we use Meta-AQUA to generate 
explanations and formulate goals in the cognitive architecture 
known as MIDCA [Cox et al., 2016]. 



Meta-AQUA [Ram and Cox, 1992] is a story 
understanding system that tries to explain “why the actor in 
the story behaved (performed a certain action) as he did” 
using a case-base of abstract explanation patterns, which are 
engineered by the experts of a specific domain. However, 
MIDCA is the cognitive architecture that controls the agent. 
The observations in the world are fed by MIDCA to Meta-
AQUA continously in the form of a story, which is not a 
natural language text but a report with each action followed 
by the observed world states. If there exists any discrepancy, 
Meta-AQUA retrieves an abstract XP, adapts it with the 
world observations and sends it to MIDCA to formulate goals 
to avoid such discrepancies in future.  

3.1 Explanation Pattern  

An explanation pattern (XP) [Schank, 1986] is a 
knowledge structure which represents the causal relations 
between the actions and the states of an agent or an actor in 
the form of an antecedent causing a consequent as shown in 
figure 1. A consequent contains the states/actions that are 
observed in the world while the antecedent may contain the 
hypothetical states/actions causing the consequent. An 
action/state is referred to as a node in Meta-AQUA and both 
are described based on their role in an XP. The actions/states 
in the consequent comprises an Explains node and the Pre-
XP nodes, where an Explains node represents the discrepant 
action/state, while the Pre-XP nodes represent all other 
actions/states which are observable and caused by the 
antecedent. The antecedent contains XP-Asserted 
nodes/source nodes which are the source actions/states 
causing the consequent. An XP structure can be as complex 
as being an XP-Asserted node for another XP structure, in 
which case the consequent of the XP in the XP-Asserted node 
is the source cause for the consequent of the other XP. This 
is further discussed with an example in section 4.1. 

3.2 Retrieving an Explanation Pattern  
An unexpected observable state/action (𝑠𝑐 → 𝑠𝑐  ≠ 𝑠𝑒)  when 
unified with the explains node makes the XP worthy of 
retrieval and it is only retrieved when Pre-XP nodes are 
unified with the world observations. However an XP is only 
applicable if the source nodes are unified and true. If the 
source nodes are unknown, the agent generates a knowledge 
goal (or learning goal) to determine the identity of these 
sources. However, since an antecedent is responsible for a 
consequent, a retrievable XP can be reasoned about to 
formulate new goals gn for an agent. 

 3.3 Example of an Engineered Explanation 
Pattern and its Retrieval 

With reference to our mine clearance example, engineering 
an XP structure can be achieved using the causal chain of 
actions as shown in the Figure 2 which represents an 
explanation 𝜒 of why a mine is located on the Q-route using 
a causal chain of actions and states. It hypothesizes that an 
enemy ship existed and was in the state of being near to the 
Q-route which enabled it to perform the action of travelling 
into the Q-route, represented in the figure as ptrans (Physical 
Transfer). This then led the enemy ship to be at the location 
of the Q-route and further enabled it to lay a mine in the Q-
route which is why there is a mine in the Q-route. 

The observed discrepant state of a mine being at the Q-
route constitutes the Explains node (Figure 3, Circle with E)  
while the observed states of a mine and the actor (AUV) 
detecting a mine fall into Pre-XP nodes as shown in Figure 
3.The XP-Asserted nodes constitute the hypothetical state of 
the enemy ship being near the Q-route along with the lay-
mine action which inherently involves ptrans as the 
subaction. 

 

The MINE-XP is retrieved when an agent detects a mine 
on the Q-route ((𝑠𝑐 → 𝑠𝑐  ≠ 𝑠𝑒) , the discrepant state is unified 
with the Explains node and it adapts the XP with the specific 
mine. Later after successful unification, the Pre-XP nodes are 
unified and adapted to the specific mine and AUV. Finally 
the MINE-XP is retrieved for use during goal formulation. 

3.4 Goal Formulation  
An XP structure explicitly says that the XP-Asserted nodes 
in the antecedent are the root cause for the observed 
consequent. So eliminating the possibility of actors and 
objects to perform such actions and/or states lead us to 
potential goals. These goals avoid such discrepancies from 
happening in future. MIDCA has a goal removal mapping 
function that takes in the input as an object or an actor and 

Figure 1: XP Structure 

Figure 2: Causal chain of actions and states for explaining 
the existence of a mine in the Q-route 

Figure 3: MINE-XP 



outputs a goal that can remove the actor or the object. 
 For the MINE-XP as shown in the figure 3, the XP-asserted 
nodes are the lay-mine action and the state of enemy ship near 
the Q-route. The possible actor for removal is the enemy-ship 
which is fed to the goal removal mapping function that 
outputs the goal apprehend(enemy-ship). 

4 Naval Mine Clearance Example Revisited 
To implement problem recognition and goal formulation in 
the context of the naval mine clearance example, we 
developed a simulation using the pMarineViewer simulator 
in the Mission Oriented Operating Suite (MOOS-IvP1 
[Benjamin et al., 2009]) which is an autonomy middleware 
solution for controlling autonomous maritime vehicles. 
Using a method similar to that described in [Wilson et al., 
2016] and [Oxenham and Green, 2017], we integrated the 
cognitive architecture MIDCA with MOOS-IvP, so that 
control of the AUV was effected by MIDCA rather than by 
MOOS-IvP itself. This also enabled Meta-AQUA to generate 
explanations as anomalous mines were encountered. 

In the simulation, the default AUV in MOOS (which is 
representative of a Remus 100 AUV) was assumed to be 
performing the mine detection and clearance under the 
control of the MIDCA GDA agent.  

Figure 4 illustrates the MOOS-AUV domain. The red 
cylindrical object in the top left corner represents the Remus 
100, the green triangles represent the 50 mines with their 
respective number, the area between the two parallel lines 
represents the Q-route, and the octagons on the left and right 
represent GA1 and GA2 respectively. The mines are 
randomly scattered throughout the transit and the Q-route. 
 

In the simulation MIDCA and MOOS-IvP are connected 
via sockets and they communicate asynchronously. MOOS 
sends the current location coordinates and speed of the 
Remus 100 to MIDCA which in turn guides the Remus 100 
by sending MOOS the speed of the Remus 100 as well as the 
coordinates of the location where it is expected to go. 
MIDCA is connected to Meta-AQUA through sockets 
synchronously. Meta-AQUA takes the agent’s current 

                                                 
1 https://oceanai.mit.edu/moos-ivp/ 

actions and perceived states from MIDCA and uses them to 
explain the anomalous state/actions via its case-base of XP’s. 
Each retrieved XP is then passed back to MIDCA, which 
reasons about the XP and formulates new goals. 

4.1 Problem and Explanation in the MOOS-AUV 
Domain  

In this section, our aim is to represent how the problem 
formalism, explanation and goal formulation defined in 
earlier sections fit in the MOOS-AUV domain. In the MOOS-
AUV domain, the goals of the agent include: (1) clear the 
mines in GA1, (2) clear the mines in GA2 and (3) head back 
to its initial position (home). Let us assume that the agent 
selects the goals in the order they are provided to the agent so 
the current goal of the agent would  be to clear the mines in 
GA1. Therefore, initially 𝑔c = cleared mines(remus,ga1). 
The expectation of the agent is that mines are present only in 
GA1. The plan 𝜋𝑔c would comprise several steps to achieve 
its current goal 𝑔c, some of which would be the following: 
𝜋𝑔c = { 
𝑎1 =move_to_the_location (remus, home , location-a), 
𝑎2 =move_to_the-location (remus, location-a , location-b), 
𝑎3 =move_to_the_location (remus, location-b , ga1), 
𝑎4 =survey_the_ga1_in (location-c), 
𝑎5 =locate_the_mines_in_ga1 (location-c), 
𝑎6 =clear_the_mines_in_ga1 (location-c)}. 

Here location-a and location-b are the intermediate 
locations outside of the Q-route which determine the path that 
the agent has to follow to reach GA1. Once it reaches GA1, 
it surveys GA1 and locates/identifies the mines and clears 
those mines. Location-c is in GA1. The initial state s0 of the 
agent is one of being idle/doing nothing. When the current 
goal of the agent is satisfied then its final state after achieving 
the goal would be sg achieved mine-free ga1. Let us now 
assume that the agent has started to work on its current goal 
and it has completed 𝑎1 and the agent has detected a mine at 
location-b. This would be an anomaly because it has violated 
the expectation of the agent, in that the expected state se here 
is that there should be no mine on the path. The history Hc = 
(𝜋c, gc) leading up to this anomaly is used by Meta-AQUA to 
determine if it is a problem or not. Since the Pre-XP node of 
Q-route in the PROBLEM-XP pattern (discussed in section 
4.2) remains false as the mine is outside of the Q-route, Meta-
AQUA does not regard the anomaly as a problem and so does 
not retrieve any explanation. In summary we would have all 
of the following in the problem definition, 𝑃gda = (𝑠𝑐 , Bk , 𝑠𝑒 
, Hc, 𝜋r, 𝜒, 𝑔n), where 𝑠𝑐 is the state of the agent when it detects 
the mine at location-b and 𝑠e is the expected state that there 
should not be a mine at location-b. Hc consists of the history 
of the plan that has been executed i.e., 𝜋c = (𝑎1, 𝑎2) and the 
goal 𝑔c = cleared mines(remus,ga1), in which case Hc = {(𝑎1, 
cleared mines(remus,ga1), (𝑎2, cleared mines(remus,ga1)}. 
The plan 𝜋r contains the remaining steps i.e., 𝜋r = (𝑎3,…𝑎6). 
𝜒 is the explanation that the anomaly is not a problem. The 
goal 𝑔n is the null set and Bk comprises the state transistion 
system   that contains all the state information, all the 

Figure 4: Simulation of the MOOS-AUV domain   



actions and their corresponsing state transition function, and 
 consists of the identity transformation since nothing 
has happened that necessitates changing the goal. 

Let us now assume that the goal gc has been achieved 
successfully and the agent is traveling towards GA2 to 
achieve its next goal. Assume that location-d and location-e 
are the intermediate locations that the agent passes through to 
reach GA2 (where both locations lie in the Q-route) and that 
there is a mine at location-e. The history Hc would now also 
hold all the subsequent changes to the plans and goals which 
the agent has achieved. The agent would now have a new goal 
gc = cleared_mines(remus,ga2). The new plan 𝜋𝑔c would 
comprise several steps to achieve this goal gc similar to the 
previous goal, some of the steps of which would be: 
𝜋𝑔c = { 
𝑎1 =move_to_the_location (remus, ga1 , location-d), 
𝑎2 =move_to_the-location (remus, location-d , location-e), 
𝑎3 =move_to_the_location (remus, location-e , ga2), 
𝑎4 =survey_the_ga2_in (location-f), 
𝑎5 =locate_the_mines_in_ga2 (location-f), 
𝑎6 =clear_the_mines_in_ga2 (location-f)}. 

Again the initial state sc of the agent would be achieved 
mine-free GA1, i.e., there are no mines in green area 1. The 
goal state sg would be achieved mine-free GA2 if the current 
goal is satisfied. The expectations se of the agent would be 
that mines are present only in GA2. The agent encounters a 
similar anomaly when it reaches location-e, but in this case 
the mine is a problem for the Remus100 because the mine is 
located in the Q-route and so would endanger any ships 
traveling along the Q-route. In summary, we would once 
again have all of the following in the problem definition, 𝑃gda 
= (𝑠𝑐 , Bk , 𝑠𝑒 , Hc, 𝜋r, 𝜒, 𝑔n), but in this case 𝑠𝑐 is the state of 
the agent when it detects a mine at location-e and 𝑠e is the 
expected state that there should not be a mine at location-e. 
Hc consists of the history of the plan that has been executed 
i.e., 𝜋c = (𝑎1, 𝑎2) and also the goal 𝑔c = cleared 
mines(remus,ga2), which can be represented as Hc = {(𝑎1, 
cleared mines(remus,ga1),… (𝑎1, cleared mines(remus,ga2), 
(𝑎2, cleared mines(remus,ga2)}. 𝜋r contains the remaining 
steps i.e., 𝜋r = (𝑎3,…𝑎6). 𝜒 is the retrieved PROBLEM-XP 
discussed in section 4.2 which explains why the anomaly is a 
problem for the Remus 100. 𝑔n is the newly formulated goal 
cleared mines(remus, qroute). Finally, Bk comprises the state 
transition system   that contains all the state information, all 
the actions and the corresponding state transition function, 
and the goal transformation function  which has 
transformed the previous goal to the new goal 𝑔n, so that it 
has become the current goal 𝑔c, while the history preserves 
the plan at the point where the agent has taken up the new 
goal so that it can resume the pursuit of the suspended goal at 
some point in the future.  

4.2 Explanation Pattern for the problem 
In the second part of the previous example, the information 
stored in  𝑃gda = (𝑠𝑐 , Bk , 𝑠𝑒 , Hc, 𝜋r, 𝜒, 𝑔n) infers that the 
anomaly is a problem because the current state does not 
match the expected state (𝑠𝑐 → 𝑠𝑐  ≠ 𝑠𝑒). The current state sc 
of observing a mine on the Q-route by the Remus 100 helps 

retrieve an PROBLEM-XP pattern explaining “why the mine 
on the Q-route is a problem”. However the state relating to 
the Remus 100 observing a mine as it transits to GA1 does 
not result in the anomaly being classified a problem because 
no XP structure is retrieved from the case base. 

The PROBLEM-XP in Figure 5 comprised of two other 
XP’s MINE-XP and  EXPLOSION-XP explains “Why the 
Mine on the Q-route is a problem”. 

MINE-XP provides an explanation of why there is a mine 
present at a physical location along the lines outlined in 
section 3.3. 

EXPLOSION-XP explains why there is an explosion event; 
it is because it is expected that the mine and a friendly ship 
could eventually be at the same location, which would cause 
the ship to suffer damage. It contains the following nodes.  

 
 

Explains Node:  
 explosion-scene (friendly-ship): an action of a friendly 

ship being broken into pieces) 

Pre-XP Node:  
 Broken(friendly-ship): The state of a friendly-ship after 

being broken into pieces. 

XP-Asserted Nodes:  
 exists(friendly-ship): A state representing the presence 

of a Friendly-ship 

 at_location(mine,friendly-ship): A state of a mine and 
a ship being at the same location. 

 MINE-XP 

PROBLEM-XP explains that the explosion is a problem if 
there is a mine at Q-route as the friendly ships travel through 
the Q-route. 
Explains Node:  

 Hazard-detection(actor,mine): A detection action 
performed by an actor in recognizing a mine  

Pre-XP Node:  

 Q-route 

 Mine 

Figure 5: PROBLEM-XP 



XP-Asserted Nodes:  
 EXPLOSION-XP 

The action “Hazard-detection” performed by the MIDCA 
agent at the Q-route causes the explains node to become true. 
As the Pre-XP nodes are satisfied, it helps us retrieve the 
PROBLEM-XP, which is reasoned about to obtain the cause 
of the problem through antecedents. 
All the actors and objects from all the antecedents are found 
by back-chaining through each of the XP-asserted nodes. The 
actors and objects are fed to the goal removal mapping 
function which generates the goals to remove the actors and 
the objects involved. The actors here are the enemy-ship and 
friendly-ship while the object is the mine. However, 
removing a friendly-ship is not possible, so the newly 
generated goals become 𝑔௡ = { cleared_mines(Qroute), 
apprehend(enemy-ship) } and, with the help of 𝐵𝑘 = (,), 
the agent can now transform its current goal to a new goal. 

5 Evaluation of the Implementation in the 
MOOS-AUV Domain 

To perform the evaluation we have introduced two other 
agents along with our GDA agent, namely an Eager agent and 
a Baseline agent. Each of the agents is assumed to be set the 
same task of detecting and clearing all the mines in GA1 and 
GA2 and that they also all detect the same set of anomalous 
mines which lie outside of GA1 and GA2. However, they all 
respond differently to the anomalous mines. The GDA agent 
detects the anomalous mines but only clears those which are 
perceived as problems. In contrast, the Eager agent clears all 
the anomalous mines that it encounters, i.e., it works on each 
and every anomaly, while the Baseline agent clears only the 
mines which are inside of the two green areas, i.e., it ignores 
all the anomalies detected and only performs the tasks 
assigned to it. 

To assess the performance of these three agents we have 
assigned scores for clearing the mines. For clearing mines 
outside of the Q-route the agents score 0 per mine. For 
clearing the mines within GA1 and GA2, the agents score 1 
per mine. Finally, for clearing the mines within the Q-route 

and outside of GA1 and GA2, the agents also score 1 per 
mine. Finally, all of these scores are added up to see which 
agent achieves the highest score. The results of these 
evaluations are presented in the next subsection 5.1. 

5.1 Results 
In assessing the performance of the three agents, we 

imposed deadlines ranging from 0 to 80 seconds on the agents 
in increments of 5 seconds. We begin by discussing the 
results obtained for three interesting cases corresponding to 
the  deadlines of 35, 70 and 80 seconds, and then summarise 
the performance  across the entire set of deadlines. 

Figure 6 presents the scores achieved by the three different 
agents when the deadline was 35 seconds. The X-axis depicts 
the agents and the Y-axis indicates the score achieved by each 
agent. Here the Eager agent achieved a score of 2, the GDA 
agent achieved a score of 7 and the Baseline agent achieved 
a score of 5. This is because the Eager agent cleared every 
mine in its path and wasted a huge amount of time in getting 
to the Q-route. The GDA agent cleared the mines within the 
GA1 and some within the Q-route but outside of the green 
areas, so it achieved the highest score among the three agents. 
The Baseline agent just performed the actions that it was 
assigned, so it cleared the mines in GA1 and headed towards 
GA2. One interesting thing to note while comparing the three 
agents is that the Eager agent would have performed as well 
as the GDA agent provided that there had been no anomalous 
mines in its path. Furthermore, the Eager agent, when 
provided with a sufficient amount of time, would have 
reached the score attained by the Baseline agent and with a 
little more time could have performed better than the Baseline 
agent provided there were mines outside of the green areas 
and within the Q-route. 

Figure 7 represents the case when the deadline was 70 
seconds. Again, the X-axis depicts the agents and the Y-axis 
indicates the score achieved by each agent. Here the Eager 
and Baseline agents both scored 10, while the GDA agent 
scored 15. In this case the Eager agent had enough time to 
clear the mines within the first green area and also some in 
the Q-route, whereas the Baseline agent had time to 

Figure 7: Score obtained by the three agents when the 
Deadline was 70 Seconds 

Figure 6: Score obtained by the three agents when the 
Deadline was 35 Seconds 



completely clear the mines in both the green areas and, 
without clearing any more mines, left for its initial location 
even when it still had a large amount of time available to clear 
additional problem mines.  Even here the GDA agent 
outperformed both the other agents because of the advantage 
that it had by starting to clear problem mines earlier than the 
Eager agent and because the Baseline agent did not clear any 
extra mines after achieving its goals. 

Figure 8 depicts the score attained by the three agents when 
the deadline was 80 seconds. As before, the X-axis depicts 
the agents and the Y-axis indicates the score achieved by each 
agent.  In this case the Eager agent achieved a score of 11, the 
GDA agent achieved a score of 17 and the Baseline agent 
achieved a score of 10. In this scenario, the Eager agent 
performed better than the Baseline agent because the Eager 
agent cleared every mine which it encountered including the 
ones within the Q-route and outside of the green areas, 
whereas the Baseline agent just cleared the mines within the 
green areas and ignored all the others. Here the GDA agent 
performed far better than the Eager agent because it started to 
clear the problem mines way before the Eager agent because 
the Eager agent was stuck clearing all the anomolous mines, 
not just the problem ones. Thus, in terms of efficiency, the 
GDA agent performed better than the Eager agent but they 
would have performed equally well if it had been important 
to clear every anomalous mine. 

 

Figure 9 illustrates the scores achieved by the three agents. 
Here the X-axis depicts the deadline from 0 seconds to 80 
seconds and the Y-axis represents the scores achieved by the 
agents. The scores are recorded for every 5 seconds. Initially 
from the deadline of 0 to 25 seconds the GDA agent and the 
Baseline agent performed similarly because they directly 
started working on the mines within the green areas and the 
Q-route, whereas the Eager agent was busily clearing the 
mines outside the Q-route until that time and thus attained a 
score of 0. After that from the deadline of 25 seconds to 35 
seconds the Baseline agent achieved a constant score as it was 
travelling from the GA1 to GA2 whereas the GDA agent 

identified the problems and worked on clearing the mines 
within the Q-route and outside of the green areas. Thus, the 
GDA agent increased its score even when travelling from 
GA1 to GA2, whereas the Eager agent entered the Q-route 
and started to clear all the mines that it encountered. At the 
deadline of 60 seconds the Baseline agent cleared all the 
mines within GA1 and GA2 and then remained idle, so the 
score achieved by the Baseline agent remained constant, 
whereas the Eager agent worked on clearing all the mines that 
it encountered and reached the score of the Baseline agent by 
the Deadline of 70 seconds. As usual the GDA agent was 
smart enough to start first on clearing problem mines and so 
maintained the highest score. Finally at the deadline of 80 the 
Eager agent performed better than the Baseline agent, 
whereas the GDA agent maintained its position of achieving 
the highest score. 

 

6 Related Research  
Statistical anomaly detection has been the subject of 
extensive research because of its applications to a variety of 
detection tasks such as network intrusion [Kumar, 2005], 
credit card fraud [Aleskerov et al., 1997], and malignant 
tumors from MRIs [Spence et al., 2001] among many others 
[Chandola et al., 2009]. Those works rely on large volumes 
of data to build statistical models of expected patterns; in that 
context, anomalies correspond to outlier patterns deviating 
from expected patterns. In our work, our models are planning 
models and anomalies correspond to deviations of those 
models. One of the most challenging problems of statistical 
anomaly detection is the potentially large number of false 
positives, which trigger unnecessary alarms. In contrast to 
those works, in our work, explanations for the discrepancy 
are generated to ascertain the nature of the anomaly and 
determine if the agent must deal with it. 

The concept of discrepancy detection has played a central 
role in GDA research. Cox [1997] presents a taxonomy of 
potential failures an agent might encounter; the taxonomy 
identifies four categories of failures: domain knowledge, 
goal, processes and environments. In this work, we are 
focusing on environmental failures as the discrepancies are 
the result of the partial observability in the environment. In 

Figure 8: Score obtained by the three agents when the 
Deadline was 80 Seconds 

Figure 9: Score obtained by the three agents for the 
Deadlines varying from 0 Seconds to 80 seconds 



Munoz-Avila et al. [2010], it is observed that not all 
discrepancies require triggering a new goal; in that work, the 
GDA agent is operating in an adversarial environment with a 
reward function (i.e., the score of the game). A reward 
function is also used in Jaidee et al [2011] to use 
reinforcement learning techniques to learn GDA knowledge.  
In those works, when the current plan is resulting in a positive 
reward rate, the agent will ignore discrepancies. In contrast, 
in our work, we don’t assume a reward function; instead, an 
explanation is generated to determine if the discrepancy is to 
be ignored.  

ARTUE [Molineaux et al 2010] is a GDA system that has 
been used to provide control in a Naval strategic simulation 
that is adversarial and partially observable environment. In 
this work, explanations were generated using a truth 
maintenance system that identifies plausible worlds that are 
consistent with the observations made by the agent and 
trigger a new goal as a result. ARTUE explains all 
discrepancies, whether problematic or not; goal formulation 
is responsible for determination of whether the agent should 
respond. The initial version of ARTUE used rule-based 
knowledge; extended versions incorporated learning of goal 
selection knowledge [Powell et al, 2012] and domain-
independent motivations [Wilson et al, 2013] responsible for 
identifying situations that require response. However, these 
techniques modified the goal formulation process, rather than 
incorporating a separate problem recognition step prior to 
explanation generation.   

More recently, the notion of GDA agent’s expectations has 
been extended to consider only the necessary effects of the 
plan executed so far as opposed to considering the whole state 
[Dannenhauer and Munoz-Avila 2015]. This form of 
expectations can be used in our work. 

Our work is motivated by work on introspective reasoning, 
where the agent reasons about the decisions that lead to 
actions taken and how these actions affect the environment. 
Meta-AQUA [Ram and Cox, 1992] reasons about the 
processes that lead to a decision which resulted in an 
discrepancy and considers three types of discrepancies: novel 
situations, incorrect background knowledge and mix-indexed 
knowledge structure; the difference between the last two is 
that in the latter the agent has the knowledge but it is not 
retrieved in the appropriate circumstances. Fox and Leake 
[2015] present a mechanism to fix these retrieval mechanisms 
using introspective reasoning techniques. In our work, we are 
focusing on novel situations when there is an expectation 
failure. 

7 Conclusion and Future Research  
We have described a formalism for agents which enables 
them to distinguish between those anomalies that they must 
deal with from those that they do not. The crucial factor in 
this is the use  of explanation patterns so that an agent can 
formulate its own goals to adapt to unexpected 
events/situations that require the agent’s attention. 

Real world scenarios often deal with deadlines and it is 
practically infeasible for an agent to worry about all the 
anomalies it comes across, reason, react and achieve its prime 

goals within the given deadline. Although our experiment 
setting is simulated, adding a deadline to our experiment 
clearly shows the performance of the GDA agent to be better 
than the Eager and the Baseline agents.   

For future work, we would like to work on several different 
enhancements that can improve the performance and 
reasoning capabilities of the GDA agent in our future 
research. First, adding an importance factor to the problem 
formalism would help the agent to prioritize anomalies that 
are classified as a problem with the goals it possesses. 
Moreover, given that an agent only has finite resources, 
prioritizing the anomalies could also assist an agent to 
delegate goals to other agents. Second, adding Goal Monitors 
[Dannenhauer and Cox, 2018] after formulating goals could 
help an agent to adapt as the world changes. For example, 
during mine clearance, if the establishment of a Q-route were 
to change from one location to another then it is highly likely 
that it would not be necessary to continue to clear mines along 
the originally proposed Q-route. Finally, if the number of 
anomalies flagged were excessive given what might be 
anticipated in a particular context, then this could serve as a 
cue for the agent to generate a goal which has broader scope 
than the current goal. For example, our experimental setting 
has around ten mines within the proposed Q-route. Instead of 
clearing just the mines on the agent’s path from GA1 to GA2, 
if the number of mines encountered were too great, then the 
agent could generate, or delegate to another agent, a goal to 
survey the entire region between GA1 and GA2. 
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