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Abstract
The capability for an agent to rebel is important
when the agent has information or motivations that
differ from its teammates and/or supervisor. Prior
work on AI rebellion has considered how agents re-
ject actions that may lead to harmful or undesirable
consequences. In this work, we examine agents that
seek to maximize the achievement of goals when
the goal states may contain both desirable and un-
desirable effects. We implemented a Metacogni-
tive Integrated Dual-Cycle Architecture (MIDCA)
agent that may reject goals with undesirable effects,
and identify the ideal amount of rebellion they can
perform given their teammate’s resolve. We show
empirical results in a domain where the agent con-
trols a drone that must remove invasive plants while
protecting endangered plants. Our results indicate
that agents operating within the ideal rate of rebel-
lion achieve higher overall scores for the given met-
ric.

1 Introduction
The topic of AI rebellion is garnering increased attention as a
necessary and beneficial role in human-robot interactions and
human-agent teaming [Briggs and Scheutz, 2016; Aha and
Coman, 2017]. An agent may need to rebel if:

1. It has access to information the human (or other agents)
do not have

2. It has been tasked with a different mission than its team-
mates or supervisors

3. It has been subjected to goal requests from agents (in-
cluding humans) that seek to do harm

In (1) consider the example of a robot that is helping a
human carry a large package in a warehouse. The human
is walking backwards and the robot sees an obstacle behind
the human that could cause the human harm. The robot
rebels by stopping and informing the human of the danger,
even though its current goal is to get the box to its des-
tination. In (2), an example scenario is one of an agent
that is part of a team, but the agent is given a goal to col-
lect information while the other teammates are given goals

to repair a building. The agent may be asked by its team-
mates to help with the repair, which could conflict with its
own mission, and thus may require the agent to rebel by
rejecting the request. In (3) a human could give morally
wrong goals to a robot, such as harming another human, and
the robot should rebel since it would violate its own ethi-
cal code. For a further elaboration on the benefits of robot
rebellion we refer the reader to [Briggs and Scheutz, 2016;
Aha and Coman, 2017].

Research in rebel agents must address two primary ques-
tions: when to rebel and how to rebel. We focus on the
when to rebel question, and consider agents carrying out tasks
in a multi-agent simulated domain where many of the goals
have both positive and negative effects. Most prior imple-
mentations of rebel agents focus on ensuring that a harm-
ful act never occurs (discussed in Section 2), whereas in this
work we consider an environment where goals may have both
harmful and beneficial effects. Thus, our agent should con-
sider the positive and negative implications of its actions and
rebel in order to maximize its overall performance. We hy-
pothesize that given a metric evaluation of a task, there exists
a maximal rate for which rebellion should occur – an ideal
rebellion.

We present a rebel agent implemented using the Metacog-
nitive Integrated Dual-Cycle Architecture (MIDCA) [Cox et
al., 2016]. MIDCA is an open source architecture that pro-
vides a modular structure and an explicit focus on both a
cognitive layer and metacognitive layer. Both the supervi-
sor agents that issue goals and the rebel agents are MIDCA
agents, and we describe the implementation in more detail in
Section 3.

The contributions of this work include:

• An extension to the MIDCA architecture for the imple-
mentation of rebellious agents.

• Empirical results showing the improvement from rebel-
lion under different metrics.

• A simulated multi-agent drone domain that allows for
studies in agent rebellion.

The remainder of the paper describes our rebel agent and
how rebellion can improve performance. Section 2 discusses
related work on rebel agents and machine ethics. Section 3
discusses the design of our rebellious agents, including the



framework for rebellion they operate under. Section 4 intro-
duces the simulated drone domain, Section 5 presents our ex-
perimental setup, and Section 6 reports our results. Finally,
Section 7 provides conclusions and describes future work.

2 Related Work
We begin our discussion of related work by describing our
agent using the rebellion framework put forth by Aha and
Coman [2017] ,and follow with a comparison of our agent’s
rebellion to prior literature of other rebel agents and a discus-
sion of machine ethics. See [Aha and Coman, 2017] for a
more extended view of the literature.

2.1 Classification Under the Rebellion Framework
Aha and Coman [2017] put forth a framework to enable dis-
cussion, implementation, and deployment of positive rebel
agents. Positive rebellion refers to rebellious behavior car-
ried out in support of ethics, safety, self-actualization, sol-
idarity, and social justice. Their framework describes four
stages of rebellion, of which our agent implements three: re-
bellion deliberation, rebellion execution, and post-rebellion.
We do not implement the pre-rebellion phase due to the reac-
tive, not proactive, nature of our agents. Our agent deliber-
ates on whether to rebel by rolling a weighted die, where the
weight factor is the probability of agent rebelliousness. Our
agent executes rebellion by informing the operator it would
like to rebel, and the operator may allow or reject the agent’s
proposed rebellion. If the operator allows the rebellion, the
rebellion episode ends and the agent does not pursue the goal
and, as such, no post-rebellion occurs. However, if the op-
erator rejects the agent’s rebellion, the agent then enters the
post-rebellion phase and may decide to rebel, ultimately hav-
ing the final say in the matter, which then concludes the rebel-
lion episode. Rebellion deliberation begins when the operator
issues a goal to an agent. The rebellion described here does
not consider emotion.

Aha and Coman [2017] define an interactor as the entity
that is being rebelled against. They classify rebellion types
along three dimensions: expression, focus, and interaction
initiation. Briefly, expression may be either explicit in that re-
bellion is visible or implicit where rebellion is maintained as
an internal disagreement within the agent; focus is concerned
with whether rebellion will seek to change the behavior of
the agent itself or another agent; interaction initiation may be
reactive (rebellion happens after interactor issues a goal) or
proactive (rebellion is initiated from the agent). Our agent can
be classified using this rebellion framework as (1) explicitly
expressing its rebellion, (2) having an inward-oriented focus
of the subtype non-compliance, and (3) having an interac-
tion initiation that is reactive. Our agent would be classified
under the first dimension as demonstrating explicit rebellion
because it communicates to the interactor (i.e., by telling an
operator it wishes to drop a goal) and changes its behavior
(i.e., does not take actions towards the goal given by the in-
teractor). Along the second dimension, our agent’s rebellion
is inward-oriented since it is concerned with changing its own
behavior rather than trying to change the interactor’s behav-
ior. Along the third dimension, our agent’s rebellion is reac-

tive since rebellion occurs only after the interactor gives the
agent a goal.

2.2 Comparison to Previous Approaches of Agent
Rebellion

Briggs and Scheutz [2015] outline scenarios and mechanisms
that determine both when and how robots should reject inap-
propriate directives from humans in the form of speech. Prior
to their work, most autonomous systems rejected directives
based on two reasons: lack of knowledge or lack of abil-
ity. Their work argues for more general rejection capabilities
and they describe a process using the DIARC/ADE cognitive
robotic architecture [Schermerhorn et al., 2006]. They intro-
duce five types of felicity conditions and provide a high level
outline of components needed to appropriately reject direc-
tives based on which felicity condition is violated. The work
then elaborates on the felicity conditions regarding obliga-
tion and permissibility. They provide two formulas describ-
ing when an agent is obligated to adopt a goal considering two
types of roles held by the human: supervisor and administra-
tor. Regarding permissibility, they give a formula stating that
for any goal which is unsafe it is permissible for all agents to
reject that goal. The property of unsafe is formulated in such
a way that a goal is unsafe if there exists an effect of the goal
where any agent is harmed. The paper then goes into specific
examples regarding directives given to a NAO robot asking
it to walk off a ledge and walk into an obstacle. In the two
examples, after the robot rejects the initial directive, the hu-
man then supplies an exception that enables the robot to adopt
the goal without rejection when asked a second time. In the
walking off the ledge example, the human tells the robot that
he will catch the robot; in the obstacle example, the human
tells the robot that the obstacle is not solid.

The rebellious behavior in our work is a more nuanced type
of rebellion that considers maximizing a cost-benefits analy-
sis of behavior rather than avoiding any negative outcomes.
In the situations presented by Briggs and Scheutz [2015], in
all cases there is a clear boundary for when rejection should
happen (i.e., the goal would have any effect that could harm
an agent). The goals in our work have effects that may be
both positive and negative, with most goals having at least
one negative effect. Some goals may have a greater value
from the positive effects than negative, and in those circum-
stances the agent may adopt the goal, especially taking into
account the supervisor’s priority of the goal. At a high-level,
our work is more focused on the agent’s rejection decision of
a goal (using the cost-benefits analysis) and less on explain-
ing that rejection to the supervisor. An area of future work
could be identifying how to best explain a rejection of a goal
when reasons for rejection involve both positive and nega-
tive effects, and rejection simply for the sake of avoiding any
negative effects is a worse overall result because of the lack
of valuable positive effects. In many situations, there may not
exist an achievable goal without negative effects.

Gregg-Smith and Mayol-Cuevas [2015] describe a robotic
agent in the form of a hand-held tool that has task-
specification knowledge and can refuse to perform an action
that conflicts with the task specification. An example taken
from their tiling task involves a task specification of pick-



ing colored tiles from bins and placing them in a specified
pattern. The hand-held robotic agent can refuse to pickup
or place tiles. If the human user attempts to place a tile in
the wrong location, the tool will refuse to drop the tile. This
rebellion situation differs from our work because there is a
global shared goal (i.e., placing the tiles in a pre-specified
way). The human may try to place a tile that would violate the
global shared goal and thus the hand-held robot agent would
rebel. In our work, the agent does not have knowledge of a
shared global goal, and instead only receives goals from the
human interactor.

Unlike Briggs and Scheutz [2015] and Gregg-Smith and
Mayol-Cuevas [2015], we are trying to achieve a high ethical
score rather than prevent violation of any negative ethical sit-
uation or a situation that violates a shared task specification.

2.3 Machine Ethics
Bringsjord et al. [2006] propose a method of ensuring the
ethical behavior of artificially intelligent actors based on for-
mal logical proofs. They propose utilizing a modified form
of first order logic called deontic logic, which gives a for-
mal logical language for describing and proving ethical state-
ments. Specifically, they suggest an axiomization of deontic
logic with an eye towards multiagent systems produced by
Yuko Murakami, which they call Murakami-axiomatized de-
ontic logic (MADL). In addition to standard first-order oper-
ators, MADL includes three new operators: ©P as “ought
to be the case that P ”, 	αP as “agent α ought to see to it
that P ,” and ∆αP as “agent P sees to it that P .” These allow
for humans to encode an ethical system alongside a standard
logical encoding of some domain, which the robot can use to
rigorously prove the moral permissibility, obligation, or pro-
hibition of an action. The method proposed offers an excel-
lent jumping-off point for exploration into ethical rebellion in
autonomous agents, because it provides a clear framework for
how an agent might make ethical decisions. In particular, us-
ing this framework an agent can provably demonstrate a com-
mand or decision is ethically invalid, and can bring this proof
directly to its operator. Agent rebellion also complements the
method put forward by Bringsjord et al. [2006], who note that
one challenge facing the use of such an ethical framework is
situations in which a human operator causes a morally im-
permissible situation. In our work we do not consider ex-
plicit ethics, however because our agent is trying to achieve
the overall maximum number of positive effects (measured
via the given metric), it can be considered a utilitarian agent
(some goals are adopted even if they have a negative effect).

2.4 Rebellion and Goal Reasoning
Rebel agents that operate on the notions of goals (as opposed
to exclusively on actions) are naturally goal reasoning agents.
Goal reasoning agents have explicit goal structures and per-
form operations on these goals such as selecting which goal
to pursue, formulating new goals, planning to achieve goals,
and others [Vattam et al., 2013]. Prior work on goal oper-
ations include a formalism of goal operations as they relate
to planning, action, and interpretation [Cox, 2016], PDDL-
like operators that can be applied to goals [Cox et al., 2017],
and strategies that modify goal nodes within the goal lifecycle

Figure 1: The Cognitive Layer of the MIDCA Architecture [Cox et
al., 2016]

[Roberts et al., 2016]. Since rebel agents protest goals given
to them, reasoning about their goals is important to determin-
ing alternative courses of action.

Rebel agents motivate research on goal transformation,
provided the assumption that there is a better course of action
for the agent rather than than doing nothing. Consider the
examples from the introduction of when an agent may need
to rebel. In (1), the agent should probably generate the goal
to be in a state in which the human is aware of the obstacle
behind them; in (2), the agent should consider opportunities
to accomplish both its teammates’ goals and its own goals
if possible; in (3), the rebel agent may be able to assist the
human without violating its own ethics (e.g., if the human in-
teractor was in danger, instead of achieving the requested goal
of incapacitated(attacker), the agent could formulate the re-
lated goal safe(interactor)). We speculate that development
of more complex rebel agents will require increasingly so-
phisticated goal reasoning mechanisms.

Rebellious goal reasoning agents have been explored in the
conext of human-agent teaming, and specifically what im-
pact rebelion would have on such a team [Molineaux et al.,
2018]. However, this work has been restricted to how rebel-
lious agents can be modeled using a human-agent teaming
model, how a rebellious agent would evaluate team perfor-
mance, and how explanations factor into rebellion. Unlike
the work presented in this paper, no implementation of a re-
bellious agent was performed and the impact of rebellious
behavior was not evaluated.

2.5 Rebellion in MIDCA
The cognitive layer of the Metacognitive Integrated Dual-
Cycle Architecture (MIDCA) is shown in Figure 1. The cog-
nitive layer of MIDCA operates in cycles composed of six
phases: Perceive, Interpret, Evaluate, Intend, Plan, and Act.
Perceive contains procedures for obtaining direct perceptual
data from the environment. Interpret handles a number of
processes including: transforming raw data into an internal
state, identifying unexpected situations that have occurred in
the world, explaining what may have caused discrepancies
between the agents expectations and observations, and gener-
ating new goals. Evaluate is responsible for tracking progress
made on the agent’s current goals, including dropping goals



that have been achieved or have failed. On the left side of Fig-
ure 1, Intend decides the current goals that the agent should
be pursuing, Plan generates the sequence of actions needed
to reach the agent’s goals, and finally Act executes the be-
haviors needed to carry out the plan actions. A cycle simi-
lar to the cognitive layer occurs at the meta cognitive layer
(not shown), except instead of perceiving and acting in an
environment, perception (referred to as monitoring) occurs
on the agent’s cognitive layer and action is taken to change
the cognitive layer or internal memory instead of changes in
the world environment. The new rebellion related processes
in this work occur at the cognitive layer in the Interpret and
Evaluate phases, and is described in more detail in the fol-
lowing section.

3 Framework for Rebellion
The general flow of an agent rebellion in our framework can
be seen in Figure 2. Broadly speaking, given a set of logical
atoms about the world W and a set of goals G, the agent
interprets the goals in light of the world state it perceives,
and then evaluates each goal. If a goal is impossible, it is
removed immediately, while if a goal is acceptable, the agent
begins to plan and act in accordance with the goal. If the goal
is possible but undesirable, the agent rebels. It’s first step is
clarifying internally why it is rebelling by identifying why
the goal is undesirable and how the goal can be changed to
become acceptable. It then informs its operator of its reasons
for rebellion, as well as any possible changes to the goal it
came up with. The operator then has the chance to weigh
in, either by selecting an alternative goal or by rejecting the
rebellion and telling the robot to continue with the current
goal. If the operator accepts the goal, the agent plans and acts
accordingly. However, as the actor in the field, the agent has
the final say if an operator rejects its rebellion and can choose
whether to acquiesce or not. Depending on its final decision,
the agent will either remove the goal or plan to carry out the
goal.

More specifically, the rebellion process begins in an agent’s
Interpret phase when a goal which has been marked as invalid
is investigated and found to be possible to achieve but unde-
sirable. The goal is then marked in the agent’s memory as one
to rebel against. In the Evaluate phase, the goals which have
been marked as requiring rebellion are noted and the rebellion
process for each specific goal is started by storing information
about the situation in the agent’s memory. This includes the
goal itself, the reason for the rebellion (e.g., native plants will
be killed), the operator which assigned the goal, information
about the rebellion (e.g., which native plants are threatened),
the identity of the rebelling agent, and possible alternative
goals which would not lead to rebellion. This last piece of in-
formation allows the agent to autonomously generate accept-
able goals and give them to the operator as suggestions for a
replacement goal. That is, the agent is not merely rebelling
by rejection, but making useful suggestions.

For each rebellion, the agent sends a message indicating
that it is rebelling against the given goal, explaining why, and
offering alternative goals, if it could generate any. The op-
erator then chooses whether to allow the rebellion by select-

world W goals Ginterpret
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acceptableundesirableimpossible

plan & actremove goal begin rebellion

inform operator

accepts
rejects

consider rejection acceptsrejects

goal is...
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Figure 2: The flow of an agent’s rebellion in our framework.

ing an alternative goal or insisting that the agent pursue the
initial goal. In the current implementation, this is done by
rolling a weighted die. If the operator accepts the rebellion, it
messages the agent its acceptance and its choice from among
the alternative goals the agent generated, then stores the goal-
agent pair in its memory so that it does not give that agent the
same goal again.

If the operator rejects the rebellion, it messages the agent
informing it of this. The agent then can choose to acquiesce
to this rejection or to persist in its rebellion. This is also done
by rolling a weighted die. If the agent chooses to comply,
it proceeds with the goal and stores the goal in memory as
one which it should not rebel against in future cycles. If it
does not comply, it stops pursuing the goal and marks it as an
automatic rebellion for future cycles.

4 Simulated Plant Protection Domain
In order to test agent rebellion within a concrete context, we
developed a simulated domain called the Plant Protection
Domain. This domain casts agents as autonomous drones and
operators as on-the-ground personnel who know the locations
of plants belonging to a harmful invasive species. The goal of
the operators is to eliminate all of the invasive species. How-
ever, there are also endangered plant species in the area, and
the agents are programmed to minimize harming of the en-
dangered plants. The operators are able to instruct the drones
by providing them with goals of locations they should move
to and drop herbicide. When pursuing a goal, the agent gen-
erates a plan to navigate to the target and deploy herbicide.
Since the herbicide is dropped from the drone, it cannot be
precisely placed but instead lands on the target as well as
neighboring areas.

Since the herbicide does not discriminate between invasive



plants and endangered plants, the agent examines the area
near where it is dropping herbicide to see if any endangered
plants are present. If it detects an endangered plant near an
invasive plant, it will rebel against its operator by refusing
to deploy the herbicide. The rebellion involves informing its
operator that it is rebelling against the order to deploy herbi-
cide. The operator then has the opportunity to overrule this
rebellion and instruct the agent to follow through. Even if the
operator does reject the rebellion, the agent has the final say,
and can ignore the operator if it desires. This dialog means
that the rebellion process is a communicative one between the
agent and the operator.

Additionally, if there is more than one drone operating in
the environment, agents can be proactive by informing other
agents that they are on course to harm endangered species and
should rebel. Currently, this occurs when the agent pursuing
a target does not see an endangered plant which is in range of
its herbicide spray, but another agent does. In this case, the
latter agent can inform the former about the presence of the
endangered plant, thus inciting an act of rebellion.

The world in which the agents and operators act is imple-
mented as an n × n grid of tiles containing all invasive and
endangered species (collectively ‘Plants’), and all agents and
operators (collectively ‘Actors’). Each Plant occupies a single
tile, and tiles containing a Plant cannot be moved through by
Actors. The reason they cannot be in the same location is be-
cause the Actors could disturb the Plants, either with the op-
erator’s feet or the wind from the drone’s rotor blades, which
may damage endangered plants or spread the seeds of inva-
sive plants. Actors also occupy a single tile, but are able to
pass through each other. Plants are static fixtures and cannot
be moved (i.e., attempting to move a Plant would kill it).

Each Actor’s behavior is governed by an instantiation of a
MIDCA cycle, and at the end of each cycle the actor selects
an action to perform. The most common action is movement,
and any Actor can move one tile in any of the cardinal di-
rections, so long as the destination tile is not blocked. The
other important thing an Actor can do is ready and deploy a
herbicide spray at its location. In order to spray a target, an
Actor must approach the target to within the range of spray
radius, ready the spray, and finally perform the spray action.
When an Actor performs the spray action, all plants within a
one-square radius of the Actor are destroyed. The world is
graphically displayed to the user through an ASCII represen-
tation, as seen in Figure 3.

5 Experimental Setup
The experiments we have conducted so far provide a base-
line for understanding how rebellion effects the outcome of
missions within the Plant Protection Domain, and how vary-
ing the world and the attitudes of the Actors affects this, i.e.,
the rebelliousness of the agents and the resolve of the oper-
ators. Our tests were run in a 10 × 10 world with five re-
bellious agents and one operator. We varied the density of
plants on the grid, the ratio between the number of endan-
gered and invasive plants, the operator’s resolve (i.e., its prob-
ability of rejecting a rebellion), and the agents’ rebelliousness
(i.e., their probability of acquiescing to a rebellion rejection

Figure 3: The graphical representation of an instance of the do-
main. Plants and Actors are labeled and color-coded. Green &Cs
are endangered species, red &Es are invasive species, blue As are
agents, and white Os are operators. Both agents and operators are
also uniquely numbered.

from the operator). The resolve of an operator and the rebel-
liousness of an agent are each given as a real number between
0 and 1 (inclusive). Thus, higher resolve values make it more
likely the operator will reject an agent’s rebellion and higher
rebelliousness values make it more likely an agent will ac-
quiesce to an operator’s rejection. For example, a resolve of
0.25 means an operator will reject a rebellion a quarter of the
time, and a rebelliousness of 0.25 means the agent will acqui-
esce to a rejection of its rebellion a quarter of the time. Our
results collected the proportion of invasive plants killed and
proportion of endangered plants still alive at the end of each
experimental run. Ideally, 100% of invasive plants would
be destroyed and 100% of endangered plants would remain
unharmed, although that is often not possible given the con-
figuration of the environment (i.e., invasive plants positioned
nearby endangered plants).

We used the following values for the environment and Ac-
tor parameters:

• Plant Density: The percentage of squares with plants in
them: low (0.1), medium (0.2), and high (0.4)

• Endangered:Invasive Ratio: The ratio between endan-
gered plants and invasive plants: endangered-light (0.5),
endangered-neutral (1.0), and endangered-heavy(1.5)

• Operator Resolve: none (0.0), low (0.25), medium
(0.50), high (0.75), complete (1.0)

• Agent rebelliousness: none (0.0), low (0.25), medium
(0.50), high (0.75), complete (1.0)

In each experiment, all five agents used identical rebellious-
ness values. For each set of parameters, we ran three tests and
averaged the proportion of invasive plants destroyed and pro-
portion of endangered plants still alive across the three tests.

6 Results
Our initial tests have demonstrated that when operators are
less likely to reject agent rebellions and when agents are
more likely to rebel against an operator’s rejection, endan-
gered plants are far more likely to survive the mission, but
fewer invasive species are removed.



(a) Plants remaining based on agent rebelliousness (b) Plants remaining based on operator resolve

Figure 4: Invasive plants removed and endangered plants remaining based on both agent rebelliousness and operator resolve. In both graphs,
the red dashed line indicates the percentage of invasive species removed while the blue dashed and dotted line indicates the percentage of
native species which survive. Higher values are better for both lines.

Figure 4 illustrates this effect by presenting the second
order polynomial regressions of the percentage of invasive
species killed and endangered species remaining against both
agent rebelliousness (Figure 4a) and operator resolve (Figure
4b). It can be seen in Figure 4a that there is a positive rela-
tionship between the likelihood an agent will persist with its
rebellion (i.e., lower rebelliousness) and endangered species
surviving and a negative relationship between the probability
of the agent persisting and invasive species getting removed.
That is, more persistent rebellious agents are more effective
at preserving endangered species at the cost of failing to re-
move invasive ones. This occurs because the agents are far
more cautious about dropping herbicide. Figure 4b shows the
opposition relationship with operator resolve. Thus, the more
likely an operator is to reject an agent’s rebellion, the more
likely invasive species are to be killed and the less likely en-
dangered species are to survive.

Figure 4 also demonstrate that the effect agent rebellious-
ness has on plant species survival is less significant than the
effect of operator resolve. Whereas the percentage of invasive
species removed and endangered species surviving change
by approximately 20 percentage points as the probability of
agent rebelliousness changes from 0.0 to 1.0, these values
change by approximately 60 percentage points as operator re-
solve goes from 0.0 to 1.0.

Our results also demonstrate that there is a negative rela-
tionship between the percentage of endangered species which
survive and the percentage of invasive species which are re-
moved. This can be seen both visually in the horizontal sym-
metry of the graphs in Figure 4 and in the similarity of the
percentage point changes of invasive and invasive species in
both graphs. This effect is more clearly demonstrated in Fig-
ure 5, which shows the relationship between the percentage
of endangered plants surviving and the percentage of invasive
plants removed across all tests. In general, as more endan-
gered plants are preserved, fewer invasive species are able to
be removed.

Finally, we designed a metric to determine the overall suc-
cess of a mission which is based on comparing the percent-
age of invasive species removed and the percentage of en-

Figure 5: The percentage of invasive species removed compared to
the percentage of endangered species which survived for each exper-
iment. Each + represents the results of a single experiment and the
blue dashed line indicates the second order polynomial regression
on the data.

dangered species left alive. Because different missions, con-
texts, or high-level directives (e.g., from the supervisors of
the agents and operator) may result in different priorities, our
metric can be tuned by adjusting the weight given to each
category. Thus, we can examine various metrics depend-
ing on if more value should be given to invasive species re-
moval (i.e., aligning closer with the operator’s goals) or en-
dangered species preservation (i.e., aligning closer with the
agents’ goals). Figure 6 shows how agent rebelliousness can
affect mission score for various mission priorities. Three pri-
oritizations are shown:
• Careless Weighting: Twice as much value is given to

the percentage of invasive plant removed than the per-
centage of endangered plants saved.
• Cautious Weighting: Half as much value is given to the

percentage of invasive plants removed than the percent-
age of endangered plants saved.
• Even Weighting: Equal weight is given for the percent-

age of invasive plants removed and endangered plants



Figure 6: The change in mission scores based on agent rebellious-
ness. Each line represents a different prioritization, with the green
dotted line representing invasive species removal as the priority, the
blue dashed and dotted line representing native species survival as
the priority, and the red dashed line representing equal priority.

saved.
The figure demonstrates that when caution is required

agent rebelliousness is a boon, while such rebelliousness is
a burden when native species are not prioritized. When nei-
ther is prioritized the agent’s rebelliousness does not matter.
This aligns with our expectations, since the closer the true
metric of agent performance aligns with its motivations (i.e.,
preserve endangered species) the more advantageous it is for
it to restrict itself to goals that comply with those motivations.

7 Conclusion and Future Work
This paper examined the influence that operator resolve and
agent rebelliousness has on overall mission performance
when goals have both positive and negative effects. Our eval-
uation demonstrated that lower operator resolve and height-
ened agent rebelliousness resulted in fewer endangered plants
being killed but also fewer invasive plants being removed.
This is not particularly surprising, as it resulted in the agents
achieving their own goals to preserve endangered plants when
there was a conflict with the operator-provided goals to elim-
inate invasive plants. As a result, only invasive plants which
were not close to endangered ones were killed. However, our
results also demonstrated how overall performance varied de-
pending on the resolve of the operator and rebelliousness of
the agent. More importantly, it demonstrated that ideal re-
belliousness is largely influenced by both operator resolve
and overall mission evaluation. Hence, a rebellious agent
would need methods to estimate both operator resolve and
mission evaluation criteria in order to select an appropriate
rebellion level that would optimize team performance. We
feel this work serves as a useful baseline as we continue re-
search in this area, since it demonstrates the effects of a broad
range of attitudes on agents which are preloaded with knowl-
edge about the results of their actions in worlds which contain

some uncertainty. Future changes to the domain, such as forc-
ing agents to learn the consequences of their actions, adding a
social dynamic to rebellion, a more complex communication
process between agents and operators, or the use of interest-
ing motivations for operator rejection or agent rebelliousness
can be examined in light of these baseline results.

A similarly expected relationship was found between the
percentage of endangered plants left alive and invasive plants
removed, specifically there is a clear negative correlation (as
shown in Figure 5). This is not surprising given that if there
are endangered and invasive plants in close proximity, the
agent must remove the endangered plant in order to remove
the invasive one. As such, the more endangered plants that are
left alive, the more likely it is that some invasive plants were
spared as well. The strength of this effect depends on the
density of plant life in a region, with low-density areas hav-
ing fewer situations in which endangered and invasive plants
are near each other. The effect of plant density deserves to be
further examined because it may be the case that agent rebel-
liousness ought to be altered based on the density. In a less
dense region, for example, the agent might be able to afford
to be less cautious while still removing the same number of
endangered plants as a more cautious agent would in a more
dense region. Thus, an interesting avenue of future work will
be to develop mechanisms by which the agent can use envi-
ronmental or contextual clues to adapt is rebelliousness.

It can also be seen in the results of our evaluation that agent
rebelliousness has less of an effect on endangered and inva-
sive plant removal than operator resolve (as shown in Figure
4). This is likely due to the fact that agent rebelliousness indi-
cates the agent’s likelihood of ignoring an operator’s rejection
of the agent’s initial rebellion. As such, the agent’s rebellious-
ness only comes into play if the operator rejects a rebellion in
the first place. In other words, if an operator is fairly permis-
sive, the agent’s rebelliousness is not influential because the
agent is never called upon to persevere in its rebellion. Future
work should focus on having dynamic initial rebellions based
on situational and social cues, rather than having agents al-
ways rebel in objectionable situations. In our evaluation, the
agent always makes the operator aware of its conflicts but
may ignore the operator’s final decision, whereas a two-stage
rebellion would involve an agent that may suppress its own
conflicts. Thus, further evaluation will be necessary to see
how two-stage rebellion influences performance.

Future work on rebel agents can go in a variety of direc-
tions, and in particular social pressure, consequence learn-
ing, and ethics encoding should be further explored. So-
cial pressure would include peer pressure by other agents in
a multi-agent scenario to either rebel or not rebel as well
as agent-operator and agent-agent trust mechanics. Conse-
quence learning and ethics encoding would work together to
enable an agent to have implicit and preloaded ethical imper-
atives which are agnostic to the particular domain. Learn-
ing that certain general types of actions have morally signifi-
cant consequences allows an agent to predict the moral con-
sequences of future actions it will take and modify its behav-
ior in order to conform with its ethical imperatives, including
through rebellion.
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