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Abstract
While probabilistic planning in AI research has
largely focused on cost-optimal goal-based objec-
tives, we argue that many realistic planning prob-
lems require more complex objective functions and
different perspectives on goals than is commonly
found in the literature. In this paper, we try to un-
derstand the existing focus of probabilistic plan-
ning on cost-optimal goal-based objectives, then
we proceed to outline some early and current AI re-
search on non-traditional objectives. We conclude
by charging AI researchers to focus more on realis-
tic objectives to make probabilistic planning more
attractive for actual applications.

1 Introduction
Completely (and partially) observable Markov Decision Pro-
cesses (MDPs) have been studied in operations research for
many decades. Optimization problems in operations research
are typically thought of as consisting of constraints (that de-
termine the feasibility of solutions) and the objective func-
tion (that determines the quality of feasible solutions, such as
their optimality). Thus, operations research has often studied
different classes of objective functions and how they affect
the process of finding optimal solutions, including its com-
plexity. Not surprisingly, the early operations research litera-
ture on MDPs studied different objective functions for them.
Later, AI researchers discovered MDPs as a good foundation
for probabilistic (or, synonymously, decision-theoretic) plan-
ning. However, they have overall been more interested in ex-
ploiting their structure for efficient planning for simple tra-
ditional cost-optimal goal-based objective functions than in
studying more realistic and thus also more complex objective
functions. In the following, we try to understand the reasons
for it, outline both some early and current AI research on non-
traditional objective functions and conclude by charging AI
researchers to focus more on realistic objective functions to
make probabilistic planning more attractive for actual appli-
cations.

2 Traditional MDP Objective Functions in AI
Deterministic AI planning typically wants to find a solu-
tion (called plan) that achieves a goal state (feasibility) with

minimal total cost (optimality), which is the sum of the costs
of the executed actions. These costs often correspond to the
consumption of one scarce resource, such as time or energy.
This objective function has some generality and allows plan-
ners to employ efficient dynamic programming approaches
(such as A*) since the Markov property holds for the world
states. The Markov property demands that the current state
is a sufficient statistic. In other words, the best future course
of action depends only on the current state and not on how it
was reached.

Probabilistic AI planning generalizes deterministic AI
planning, including its objective function, since the world is
often not deterministic and actions thus rarely have only one
possible outcome. A deterministic solution either achieves a
goal state or not, while a probabilistic solution might be able
to achieve it with a probability other than one or zero. Thus,
one might want to find a solution that achieves a goal state
with maximal probability. If the goal state can be achieved
with probability one, then one might want to find a solu-
tion that achieves a goal state not only with probability one
but also with minimal expected total cost, which again is
the sum of the costs of the executed actions. Both objec-
tive functions can be expressed as minimizing the expected
total cost for suitable probability and cost structures. In prac-
tice, one often minimizes the expected total discounted cost
purely for mathematical convenience. These objective func-
tions allow planners to employ efficient dynamic program-
ming approaches on cost-to-go values (such as value iteration
or policy iteration) since the Markov property holds again for
the world states. These planners often solve the so-called
Bellman equations (that describe the optimal solutions, which
are policies) by manipulating value functions (that map world
states to their cost-to-go values) until they fix a fixed point of
the Bellman operator.

3 MDP Research in AI
AI researchers have been able to contribute to the study of
MDPs because of their different way of thinking about plan-
ning. For example, operations research generalized graph
search around 1950/60 to probabilistic rather than deter-
ministic actions, resulting in MDPs. AI generalized graph
search around 1970 to states rather than vertices, resulting
in STRIPS planning. States are sets of propositions and
thus provide additional structure that can be used for effi-



cient planning. Once AI researchers discovered MDPs, they
could utilize this structure around 1990/2000 to develop sym-
bolic, structured and factored MDPs [Boutilier et al., 1999;
Koller and Parr, 1999] and ways of finding optimal solutions
for them that, for example, do not express value functions
as tables but in more structured form (SPUDD [Hoey et al.,
1999], for example, uses decision diagrams), which results
in state abstraction that can allow for compact storage and
the capability to generalize across states. AI also brought
to bear other AI approaches for finding optimal solutions,
including search with macro actions [Sutton et al., 1999;
Parr and Russell, 1998] (which results in temporal abstrac-
tion) and forward search [Bonet and Geffner, 2000; Hansen
and Zilberstein, 2001] (which needs to consider only states
reachable from the start state under the encountered policies).
The heuristic forward search approach LAO* [Hansen and
Zilberstein, 2001] has also been generalized to apply to fac-
tored MDPs [Hansen et al., 2002; Feng and Hansen, 2002].
Approaches such as decision-theoretic refinement planning
[Doan and Haddawy, 1995], MAXQ [Dietterich, 2000] and
HAM [Parr, 1998] use task-decomposition and incompletely
specified policies to speed up their computations. However,
almost all of this early AI research on MDPs was done for
minimizing the expected total cost.

4 MDP Planning with Risk and Deadlines
MDPs are now described in many AI textbooks, such as
in “AI: A Modern Approach” [Russell and Norvig, 2003].
Interestingly, utility theory is discussed in one of its chap-
ters as well, which points out that maximizing the expected
total utility for non-linear utility functions is rational for
probabilistic planning in high-stake one-shot decision situa-
tions - an old insight from decision theory [Bernoulli, 1738;
von Neumann and Morgenstern, 1947] that has also been
pointed out in the AI literature on MDPs [Koenig and Sim-
mons, 1994]. For example, when contestants decide whether
to go for the one-million dollar question on the quiz show
“Who Wants to be a Millionaire”, they typically do not
choose the alternative with minimal expected pay-off because
they are risk-averse, that is, worry more about the worst case
than the average case (as dictated by Murphy’s law). MDPs
are discussed in another chapter of Russell & Norvig as a
good foundation for probabilistic planning but in the context
of minimizing the expected total cost, not in the context of
maximizing the expected total utility for given non-linear util-
ity functions. Interestingly, high-stake one-shot decision sit-
uations are typical for several AI planning applications, such
as in crisis situations (for example, oil spills) or on spacecraft.

Maximizing the Expected Total Reward Utility func-
tions map the wealth of a decision maker (here: the accumu-
lated reward) to the ”warm and fuzzy” feeling (called utility)
that the wealth induces. Consider the objective function of
minimizing the expected total cost or, equivalently, maximiz-
ing the expected total reward, which is the sum of the rewards
of the executed actions:

max
policy

E(
∑
time

reward(policy, time)). (1)

This objective function is identical to maximizing the ex-
pected total utility for any linear utility function since utility
functions are unique only up to linear transformations. As
explained earlier, the Markov property holds for the world
states, which allows for efficient planning. However, lin-
ear utility functions model risk-neutral decision makers but,
unfortunately, decision makers are typically risk-sensitive in
high-stake one-shot decision situations.

Maximizing the Expected Total Utility Consider now the
more realistic objective function of maximizing the expected
total utility

max
policy

E(U(
∑
time

reward(policy, time))) (2)

for a given non-linear utility function U . Such utility func-
tions cannot only model risk-sensitive decision makers but
also deadlines, which are typical for AI planning applications
where the rewards correspond to the consumption of a scarce
resource, such as time or energy - as identified by a UAI chal-
lenge on “Planning Under Continuous Time and Resource
Uncertainty: A Challenge for AI” [Bresina et al., 2002] by
NASA researchers already in 2002. A lunar rover, for ex-
ample, might have to reach a given science target within its
energy limit. A typical utility function then is a step func-
tion that is zero if the resource consumption exceeds the re-
source limit (called deadline in case of time) and one other-
wise [Haddawy and Hanks, 1998]. Unfortunately, Objective
Function (2) is not necessarily identical to

max
policy

E(
∑
time

U(reward(policy, time))), (3)

otherwise one could simply replace each action reward in an
MDP with the utility of the reward and then maximize the
expected total reward.

Exponential Utility Functions There is only one class
of non-linear utility functions for which the Markov prop-
erty holds for the world states, namely exponential utility
functions [Howard and Matheson, 1972; Watson and Buede,
1987]

U(wealth) =

{
γwealth γ > 1
−γwealth 0 < γ < 1

, (4)

which are parameterized with one real-valued parameter γ
that can express the risk sensitivity of decision makers across
the whole spectrum from being extremely risk-seeking for
γ → +∞ (“hoping for the best case” where nature is friendly
and makes the best outcome happen) to being extremely risk-
averse for γ → +0 (“fearing the worst case” where nature
is adversarial and makes the worst outcome happen). Not
only does the Markov property allow for efficient planning
but all elements of the Bellman equations for maximizing the
expected total utility for exponential utility functions can be
mapped to elements of the Bellman equations for maximizing
the expected total discounted reward because the objective
function of maximizing the expected total discounted reward
is

max
policy

E(
∑
time

γtime × reward(policy, time)) (5)



while the objective function of maximizing the expected util-
ity for the utility functions U(wealth) = γwealth is

max
policy

E(U(
∑
time

reward(policy, time))) (6)

= max
policy

E(γ
∑

time reward(policy,time)) (7)

= max
policy

E(
∏
time

γreward(policy,time) × 1). (8)

The values γreward(policy,time) can often be treated as time-
varying discount factors for MDPs that provide a reward of
one for achieving the goal state (in the last time step) and no
other action rewards (in earlier time steps) [Koenig, 2000],1
which often makes it possible to transform approaches that
maximize the expected total discounted reward to approaches
that maximize the expected total utility for exponential utility
functions, sometimes with only few changes [Koenig and Liu,
1999; Liu, 2005].

General Non-Linear Utility Functions Exponential util-
ity functions model only decision makers with a risk sen-
sitivity that does not depend on their wealth but, unfortu-
nately, risk-averse decision makers typically become less risk
averse as they accumulate rewards and become wealthier
[Bell, 1988]. Exponential utility functions cannot model re-
alistic utility functions for deadlines either. Thus, exponen-
tial utility functions are still not sufficiently expressive. For
other non-linear utility functions, the Markov property does
not hold for the world states but it can be restored by in-
cluding the wealth in the state, even though this increases
the state space with an essentially real-valued dimension and
thus makes planning less efficient. Value functions then map
these augmented states (which are pairs of world states and
wealths) to their cost-to-go values:

(States×Wealth)→ R. (9)

However, value functions can often be represented more com-
pactly if they are interpreted as mapping world states to func-
tions (called reward functions) from wealths to cost-to-go val-
ues

States→ (Wealth→ R) (10)

because these reward functions can sometimes be represented
exactly and compactly with a small number of parameters
and then be stored and manipulated efficiently. The cor-
responding Bellman equations then relate reward functions
(one for each world state) rather than cost-to-go values (one
for each augmented state), which allows planners to em-
ploy “functional” or “symbolic” dynamic programming ap-
proaches that operate on the reward functions directly rather
than the cost-to-go values. Various classes of reward func-
tions have been studied that are closed under the applica-
tion of the Bellman operator (and contain the desired utility
functions), which allows functional or symbolic dynamic pro-
gramming approaches (such as functional value iteration [Liu

1To be precise about the mapping, γtime corresponds to∏
time γ

reward(policy,time), and reward(policy, time) is 1 in the
last time step and zero otherwise, which makes the sum disappear.

and Koenig, 2006]) to transform reward functions of these
classes to reward functions of the same class, which can be
represented in the same framework.

The idea of computing value functions over one or more
continuous state dimensions required to support the above
calculations first appeared in [Boyan and Littman, 2000] and
has not only been used for maximizing the expected total util-
ity for general non-linear utility functions but also, for exam-
ple, for maximizing the expected total reward in the presence
of time-varying rewards. Reward functions have been used in
[Li and Littman, 2005] (who use piecewise constant reward
functions), [Feng et al., 2004] (who use piecewise constant
and piecewise linear reward functions), [Poupart et al., 2002]
and [Pynadath and Marsella, 2004] (who use piecewise lin-
ear reward functions represented as decision-trees with linear
reward functions at the leaves), [Liu and Koenig, 2006] (who
use piecewise linear reward functions with and without ex-
ponential tails) and [Liu and Koenig, 2005; 2008] (who use
piecewise one-switch reward functions, which are combina-
tions of exponential and linear reward functions), even though
their number of pieces typically increases as dynamic pro-
gramming progresses. Of special interest are piecewise linear
reward functions because they can be used to easily approxi-
mate any reward function from above and below to a desired
degree as dynamic programming progresses. This property
can be used to estimate the error of the resulting solution and
sometimes results in good approximation guarantees, which
allows one to trade off between runtime and memory con-
sumption on one hand and the solution quality on the other
hand [Liu and Koenig, 2006]. Piecewise linear reward func-
tions can also approximate piecewise linear reward functions
themselves, which could be used to repeatedly simplify them
as dynamic programming progresses, for example, to keep
their number of pieces constant.

More recently, AI researchers have extended this form of
dynamic programming to arbitrary multivariate mixed dis-
crete and continuous piecewise transitions and reward func-
tions with discrete actions [Sanner et al., 2011] (arbitrary
piecewise transitions and rewards), continuous actions [Za-
mani et al., 2012] (piecewise linear transitions and up to uni-
variate quadratic rewards) and arbitrary multivariate approxi-
mations [Vianna et al., 2013] (piecewise linear transitions and
rewards) — all using an extended algebraic decision diagram
(XADD) data structure. Ultimately, this extension makes it
possible to use the aforementioned techniques for planning
with exponential utility functions in multivariate mixed dis-
crete and continuous MDPs.

AI researchers have also studied probabilistic planning
with resource limits, where there are no goal states but the
execution of actions does not only consume the resource but
also results in rewards. A lunar rover, for example, might
have to maximize its science return within its energy limit.
The resource consumptions are not deterministic but can
be characterized by probability distributions over continuous
values [Marecki et al., 2007].



5 Game-Theoretic, Imprecise Model, and
Robust Objectives

Modeling realistic decision-making scenarios often requires
the consideration of the independent (and presumed rational)
actions of other agents. Such models for multiple agents in-
herently induce competing objectives which must then be ex-
plicitly modeled. Perhaps the simplest case is the two player
zero-sum Markov game [Littman, 1994], where two agents
a1 and a2 optimize their policies at each time step in order
to maximize and minimize, respectively, the reward (that is,
one agent’s gain is the other agent’s loss). This can be defined
over a time horizon as follows, where the expectation is taken
over stochastic policies of the agents as well as transition un-
certainty and where Q recursively encapsulates all discount-
ing, expectations, and game-theoretic reasoning for smaller
horizons with the base case Q(policy0a1

, policy0a2
,−1) = 0:

max
policytime

a1

min
policytime

a2

E(reward(policytime
a1

, policytime
a2

, time)

+Q(policytime
a1

, policytime
a2

, time− 1)).

If the agents sequentially alternate turns (resulting in a Stack-
elberg game) then this Markov game can be solved by a sim-
ple extension of value iteration to perform both a max and a
min. However, if, more generally, the agents move concur-
rently, then a common solution is to assume that the agents
follow stochastic strategies and seek a Nash equilibrium at
every time step of value iteration [Littman, 1994]. This idea
can also be extended to mixed discrete and continuous state
MDPs [Kinathil et al., 2014]. Variations of this framework
have received attention in the last decade due to applications
in security and policing [Paruchuri et al., 2008].

Additional variations of Markov games have seen their ap-
plication in robust MDP optimization settings where either
(1) transition parameters are not known precisely [Delgado et
al., 2011] or (2) complex distributions are approximated by
high-confidence intervals in chance-constrained control [Za-
mani et al., 2013]. In both cases, nature is seen as the ad-
versarial agent a2 in a Markov game framework, and a ro-
bust solution guarantees that a given value is achievable for
the worst-case transition (and thus outcome) selection of na-
ture. Other works suggest further modifying such extreme
worst-case robust adversarial objectives (that is, “lightning
does not strike twice”) to mitigate how adversarially nature
behaves [Mannor et al., 2012].

A more general setting involving multiple agents with ob-
jectives that are not necessarily competing is the case of
general sum Markov games where each agent ai (for i ∈
{1, . . . , k}) maximizes its own reward profile rewardi sub-
ject to all other agent’s actions. This more general setting
generally does not have a unique solution [Hu and Wellman,
1998]. However, methods exist to find all correlated equilib-
ria for a set of agents [MacDermed et al., 2011] (requiring
agent communication to agree on an equilibrium).

6 Multi-Criteria Objectives
When humans use MDPs as a tool for decision support, one
of the most difficult tasks is to engineer the reward, given

trade-offs among different (often competing) objective crite-
ria. In this multi-objective or multi-criteria setting, it is com-
mon to assume that the desired reward function is composed
of a linear combination of n sub-reward criteria rewardj (for
j ∈ {1, . . . , n}), each weighted by weight wj ∈ R:

max
policy

E

∑
time

n∑
j=1

wj · rewardj(policy, time)

 .

Choosing a particular instantiation of weights wj (such as a
balanced weighting where wj = 1 for all j) leads to a scalar-
ization of the multi-criteria objective into a standard MDP
objective, see [Roijers and Whiteson, 2017] for an excellent
overview.

Research over the last decade and a half sought to find
good policies over a variety of weight preferences [Natara-
jan and Tadepalli, 2005; Ziebart et al., 2008] by adopting
alpha-vector style piecewise convex value function solutions
from partially observable Markov Decision Processes. Other
work has sought to find all optimal policies for any preference
weighting for discrete state MDPs using so-called convex hull
value iteration [Barrett and Narayanan, 2008]. Recently, so-
lutions for all optimal policies have been extended to mixed
discrete and continuous MDPs by treating the weights as con-
tinuous state variables and leveraging symbolic dynamic pro-
gramming [Kinathil et al., 2017].

7 Non-Markovian Objectives
Historically, the bulk of approaches for planning in both de-
terministic and probabilistic settings limit the specification
of the objective function to be Markovian in nature; either
through a set of goal states to be reached or state (and ac-
tion) specific rewards (and costs, respectively). Quite often,
however, the desired behavior of an agent is non-Markovian
in nature. High-level goals or constraints, such as “always re-
turn to the charging station at some point in the future” or “al-
ways serve a customer within 5 time units after they make a
request,” refer to the entire trajectory (that is, state sequence)
that an agent would encounter.

To complicate matters further, the entire trajectory of an
agent may not be finite. For example, a life-long agent would
be expected to continually operate under a given specifica-
tion, achieving subgoals constantly.

To represent temporally extended goals and preferences
over the trajectory an agent takes in an environment, various
forms of temporal logic have been introduced. Techniques for
dealing with temporal logics have come primarily from the
controller synthesis community [Pnueli and Rosner, 1989].
However, there are some notable attempts to incorporate such
specifications directly into more traditional planners.

Perhaps the most common form of temporal logics is Lin-
ear Temporal Logic (LTL), which allows us to combine op-
erators describing the next time step in an agent’s trajectory
(©), some time step in the future (♦), all time steps in the
future (�), as well as any combination of typical Boolean
connectives. As an example, �♦(at chrg stat) is a realiza-
tion of the first statement above: always eventually be at a
charging station.



>

(at chrg stat) (at chrg stat)
>

Figure 1: �♦(at chrg stat) as a non-deterministic automaton.

A restricted subclass of LTL for preferences and goal con-
straints was introduced in the 2006 International Planning
Competition (IPC).2 Only a small subset of possible modal
operator combinations was allowed in the specification, and
the bulk of techniques entered into the competition treated
each of the options independently (as opposed to a general
solution). Since their introduction to the planning commu-
nity, there have been limited attempts to address a richer class
of temporally extended goals, and we cover a representative
sample here.

A common thread for many of the approaches is to mod-
ify the original problem specification with non-Markovian re-
wards into an equivalent Markovian formulation (perhaps at
the expense of encoding size). By far the most popular ap-
proach is to use automata to capture the essence of the tem-
porally extended specification and then to model the behavior
of the automata as part of the domain theory. As an exam-
ple, the automaton representing �♦(at chrg stat) is shown
in Figure 1.

This technique was first introduced for a subset of LTL
[Cresswell and Coddington, 2004] and then quickly extended
to a richer class of expressions [Baier and McIlraith, 2006].
These works focused on finite versions of LTL in the deter-
ministic setting.

Subsequent work extended this work to the infinite case,
where the agent’s trajectory in the environment is assumed to
be infinite [Patrizi et al., 2011]. This approach also leverages
a compilation to automata, models its behavior as part of the
domain theory and then searches for solutions that loop in-
definitely by finding a state where the automata is accepting
and a loop of actions returns the agent to that state.

The technique was improved further by moving to the non-
deterministic setting [Patrizi et al., 2013] where the accepting
condition can be achieved infinitely often by using a key mod-
eling trick: An auxiliary action predicated on the original goal
is introduced that non-deterministically achieves a new goal
fluent, or leads to a state where another normal action must
occur, see Figure 2. In this configuration, a strong cyclic solu-
tion (that is, one that always achieves the goal eventually) will
correspond to behavior that satisfies the original temporally
extended goal over an infinite trajectory. This work further
allows for general non-deterministic actions, which brings us
one step closer to the probabilistic setting.

A similar approach (using richer forms of automata) in the
non-deterministic setting generalized the range of LTL ex-

2http://icaps-conference.org/ipc2006/
deterministic/

(:action achieve_goal
:precondition (and <original-goal>

(did-something))
:effect (oneof (goal)

(not (did-something))))

(:action any_other_action
:precondition <original-precondition>
:effect (and <original-effect>

(did-something)))

Figure 2: Re-encoding to achieve a goal condition infinitely of-
ten. As long as the accepting criterion of the automata is cap-
tured by original-goal, the achieve goal action can be
applied. This subsequently forces another regular action to occur
(represented by any other action) causing a cyclic planner to
find an infinite loop satisfying the original goal.

pressivity further [Camacho et al., 2017b]. Follow-up work
also investigated the dual notion of producing a certificate
when and why no solution exists [Camacho et al., 2018].

At the level of MDPs, similar concurrent research initially
tackled the task of producing solutions that maximize the
probability of achieving an LTL specification [Courcoubetis
and Yannakakis, 1990; Baier et al., 2004], and later solutions
that maximize the expected total reward while achieving LTL
“almost surely” [Ding et al., 2011]. The latter work addressed
the task by identifying an “optimizing proposition” that cor-
responds to the repeated satisfaction of an LTL formula and
aims to minimize the expected total cost between successive
achievements of the optimizing proposition.

While these works focus on achieving the specification as
a hard constraint (either to be surely satisfied or satisfied
with maximum probability), they do not provide a solution
for using non-Markovian specifications as a soft constraint
or preference. Initial attempts to address this setting either
progressed [Thiébaux et al., 2006] or regressed [Bacchus et
al., 1997] the logical specification during a trajectory of the
agent, but rely on custom solutions for handling the formu-
lae explicitly. Recently, one work aimed to remedy this by
converting the LTL preferences (each of which has a corre-
sponding reward) into separate automata as described above
for the non-probabilistic case [Camacho et al., 2017a]. Con-
sequently, the problem is reformulated so that the automata’s
accepting conditions are incorporated as Markovian rewards
in the new state description, allowing one to leverage off-the-
shelf probabilistic planners. In addition, reward shaping [Ng
et al., 1999] techniques leveraging the compiled LTL reward
automata structure can be used to mitigate off-the-shelf plan-
ner difficulties with sparse delayed rewards often arising with
LTL objectives [Camacho et al., 2017a].

Finally, to expand the expressivity of the logic speci-
fications directly towards probabilistic reasoning, a range
of probabilistic temporal logics have been introduced, see
[Konur, 2010] for a broad summary. However, few have been
realized in the MDP setting as viable specifications for non-
Markovian goals or preferences.

Non-Markovian rewards and goals play a key role in de-
scribing a wide range of real-world phenomena and complex



objectives. In this section, we have given a broad overview
of the efforts towards addressing this important style of non-
traditional objective functions, but the efforts pale in compar-
ison to the amount of research focused on Markovian-based
objectives. We can also see the common thread in solution
style for many of the approaches: convert non-Markovian
specifications into equivalent Markovian ones by leveraging
structure within the specification itself.

8 Concluding Remarks
MDP planning with non-traditional objective functions is still
a very small research area compared to exploiting structure
for efficient MDP planning with traditional objective func-
tions. Of course, the research directions of using realistic
objective functions and efficient planning are not competing,
since we pointed out that advances in the latter have helped
the former (such as for functional and symbolic dynamic pro-
gramming). However, as AI matures and sees increasing ap-
plications, the non-traditional objective functions covered in
this paper (and beyond) are critical for the success of AI plan-
ning and – relative to work on exploiting structure – warrant
much more research focus than they have received so far.
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