
Goal Reasoning with Goldilocks and Regression Expectations in Nondeterministic
Domains

Noah Reifsnyder and Héctor Muñoz-Avila
Lehigh University

Bethlehem, PA 18015
{ndr217, hem4}@lehigh.edu

Abstract
Goal-driven autonomy (GDA) is a reflective model
of goal reasoning that controls the focus of an
agents actions by dynamically resolving unex-
pected discrepancies to the agent’s expectations.
Until now, GDA agents define expectations assum-
ing they are executing plans. This paper presents
different formalizations of the notion of expecta-
tions for GDA agents executing policies. These
are necessary when acting in nondeterministic do-
mains, where executing actions might have mul-
tiple outcomes. We present an algorithm called
Goldilocks, computing these expectations and re-
port on a comparative study between Goldilocks,
Informed, Immediate, and Regression expectations
and how they affect an agents goal reasoning.

1 Introduction
Goal-driven autonomy (GDA) is a goal reasoning model for
controlling agents acting in the environment. GDA agents
perform a 4-step cycle in which (1) actions are executed in
the environment from a solution (e.g., a plan) generated for
achieving previously formulated goals; (2) expectations on
the agent’s actions are computed and checked against the ac-
tual outcomes of the actions; (3) when there is a discrepancy
between the outcome and the expectations, the agent formu-
lates an explanation for this discrepancy; (4) as a result of this
explanation, new goals to pursue are formulated.

GDA has been the subject of research in a number of top-
ics, including research on GDA agents for naval operations
[Molineaux et al., 2010], GDA agents for computer games
[Weber et al., 2010; Jaidee et al., 2013], automated learning
of GDA components including expectations [Weber et al.,
2012], explanations [Molineaux and Aha, 2014], and goal-
formulation knowledge [Jaidee et al., 2011].

Researchers have observed that the notion of expectations
plays a key role in the overall goal reasoning of GDA agents
[Dannenhauer et al., 2016; Dannenhauer and Munoz-Avila,
2015]. If the expectations are too narrow, GDA agents might
fail to detect discrepancies when they are needed leading to
agents continuing to pursue a goal that will lead to a failure.
If the expectations are too general, the agent might trigger the
GDA cycle and potentially change its goals in situations when
it is not required to do so. A common characteristic of these
works is that they compute the expectations over sequences of
actions, typical of deterministic domains. We re-examine the

notion of expectations when the solutions achieving the goals
are policies, which are mappings from states to actions. Poli-
cies are needed in nondeterministic domains, where actions
may have multiple possible outcomes.

The following are the main contributions of this paper:

• A formalization of GDA expectations for policies.

• An algorithm computing these expectations.

• A comparative study in a domain from the GDA litera-
ture, Arsonist [Paisner et al., 2013].

2 Preliminaries
We have a collection of variables V . Each variable v ∈ V can
take a value from C, a set of constants. A state s is a mapping
s : V → C, instantiating each variable to a constant. S
denotes the collection of all states.

In a nondeterministic (ND) domain, actions have multiple
possible effects: An ND action a = (namea, prea, Effa)
where prea is a partial mapping prea : Vprea ⊆ V → C.
An action a is applicable in a state s if for every variable
v ∈ Vprea , prea(v) = s(v). Effa is a finite set of possible
effects. Specifically, if Effa = {effa1 . . . effan}, then each
effai is a partial mapping effai : Veffai ⊆ V → C. Ap-
plying effai to a state from s, results in an s′ as follows: if
v ∈ Veffai then s′(v) = effai (v); otherwise, s′(v) = s(v)
(i.e., the variable’s value remains unchanged). Applying a to
s will nondeterministically choose one of these effects, say
effai , and applies it resulting in a state s′. In this case, we
say that a ND choice is made and that s′ ∈ ND(a(s)).

A planning problem P is defined as a triple (S0, g,A),
indicating the initial state, the goals and the actions respec-
tively. The goals g are a partial mapping g : Vg ⊆ V → C.
The goals g are satisfied in a state s if for every variable
v ∈ Vg , g(v) = s(v).

A solution is represented as a policy π : S → A, a par-
tial mapping from the possible states in the world S to ac-
tions A, indicating for any given state s, what action π(s) to
take. Given a policy π, an execution trace is any sequence
s0 π(s0) s1 π(s1) . . . π(sn) sn+1, where si is a state that
can be reached from state si−1 after applying action π(si−1).

A solution policy π is weak if there exists an execution
trace from s0 to a state satisfying g. Weak solutions guaran-
tee that a goal state can be successfully reached sometimes. A
solution π is either strong cyclic or strong if for every state s
that the agent might find itself in after executing π(s0), there
exists an execution trace from the state s to a state satisfying

g. The difference is that in strong cyclic solutions the same
state might be visited more than once whereas in strong so-
lutions this never happens. Strong solutions are ideal since
they never visit the same state more than once but in some
domains they might not exists.

3 GDA Agents and their Expectations
GDA agents generate a solution π achieving some goals g
using a planning domain Σ. They continually monitor the en-
vironment to check if the agent’s own expectationsX are met
in the environment s. When a discrepancy d is found between
the agent’s expectations X and the environment s, the agent
generates plausible explanations for d; as a result of these ex-
planations new goals ĝ are generated, thereby restarting the
cycle with g = ĝ.

We now define the expectations X when the solution π is
a policy. We define an expectation X as a partial mapping
X : Vx ⊆ V → C. Hence, a discrepancy occurs in a state s
if there exists a variable v ∈ Vx, X(v) 6= s(v).

There are a variety of expectations from the GDA lit-
erature [Cox, 2007; Dannenhauer and Munoz-Avila, 2015;
Dannenhauer et al., 2016]. All of these have been defined for
the deterministic case, when actions have a single outcome.
Hence, we adapt these definitions for the nondeterministic
(ND) case. We use the following conventions:

1. Aprefix = (a1...an+1) is the sequence of actions exe-
cuted so far.

2. Sprefix = (s0...sn) is the sequence of states visited so
far.

3. Gprefix = (g0...gn) is the sequence of goals that the
agent has been pursuing so far. This includes the special
case when the goals have not changed: e.g., g0 = ... =
gn. Goals may change as a result of the GDA process.

The relation between Aprefix, Sprefix and Gprefix is as fol-
lows: ai+1 = πk(si), where πk is a policy achieving gk. This
again includes the case when π0 = ... = πn (i.e., the agent
has been executing the same policy. That is, when the goals
have not changed). si+1 is the state resulting from applying
ai+1 to si at execution time (i.e., an effect of ai+1 is nonde-
terministically chosen). Under these conventions, sn is the
current state and an+1 = πn(sn) is the next action to be exe-
cuted. We now define the expectations at time n, Xn:

1. Immediate expectations: Xn = pren where pren are
the preconditions of π(sn).

2. Informed expectations: XInf (Aprefix, s0) moves for-
ward all valid conditions effects so far in Aprefix. In-
formed expectations are formally defined as follows:
Xinf (Aprefix, s0) = Xinf (Aprefix, s0, {})
• Xinf ((), s,X) = X .
• Xinf ((akak+1...an), sk, X) =
Xinf ((ak+1...an), sk+1, comp), where sk+1 is the
state that resulted from the ND of ak+1 to sk by
applying effak+1

i : Vi ⊆ V → C, the ND-chosen
effect from Effak+1 = {effak+1

1 . . . eff
ak+1
n }.

Let X : VX ⊆ V → C . We define

comp : Vcomp ⊆ V → C is the composite
function effak+1

1 •X defined as follows:
– if v ∈ Vx − Vi then comp(v) = X(v).
– if v ∈ Vi then comp(v) = eff

ak+1

i (v).
– for all other variables comp is undefined (i.e.,
Vcomp = Vi ∪ Vx)

4 Policy Goal Regression Expectations
In contrast to the deterministic case whereby solutions to
planning problems are sequences of actions, in ND domains,
policies, consisting of states and actions taken in those states,
are the solutions to planning problems. Hence, we define
expectations for both states and actions. More specifically,
given a policy π : S → A that is a strong solution for the
planning problem (s0, g,A), we now define expectationsXs :
Vxs ⊆ V → 2C×[0,1] and Xπ(s) : Vxπ(s)

⊆ V → 2C×[0,1] for
a state s, partial mappings.

Second, we define the graph representation of π,
as a graph G(π) = (V,E) where V = S ∪
{π(s)|s ∈ S} and E = {(s, π(s))|s ∈ S} ∪
{(π(s), s′)|s′ ∈ ND(π(s))}. For example, in Figure
1, V = {s0, s1, s2, s3, π(s0), π(s2), π(s3)} and E =
{(s0, π(s0)), (π(s0), s1), (π(s0), s2), . . . , (π(s3), s0)}. We
are assuming that the state s1 is a goal state; when s1 is
reached, π computation ends successfully.

Figure 1: A graph representation G(π) of a policy π. s1 is
the goal state.

We now define the Plan Tree T = (s0, E0, V0) with root s0
for the digraph G(π) = (E, V). T represents all paths from
the initial state to a goal state, and is constructed using DFS
as follows. In DFS, there are four types of edges between
nodes:

• Tree edges: Edges of either the form (s, π(s)) or of the
form (π(s), s′) such that s′ was visited whenever DFS
visited π(s) and visited every non-visited child node of
π(s). For example, (π(s0), s1) is a tree edge.

• Back edges: e = (π(s), s′) is a back edge if there
is path P of tree edges from s0 to π(s) of the form:

(s0, π(s0)), (π(s0), s1) . . . (s′, π(s′)) . . . (s, π(s)) and
(π(s), s′) ∈ E. For example, (π(s3), s0) is a back edge
because there is a path of tree edges from s0 to (π(s3)).
• Cross edges: e = (π(s), s′) is a cross edge if there are

paths P and P ′ of tree edges from s0 to vertices π(s) and
s′ respectively and e = (π(s), s′) ∈ E. For example,
(π(s2), s1) is a cross edge.

• Forward edges: Those would be edges of the form
e = (π(s), s′) such that there is a path of tree edges from
(s0, π(s0)), . . . (s, π(s)) . . . (π(s′′), s′), (π(s), s′) ∈ E
and s 6= s′′. Forward edges cannot exist in the expan-
sion, as whenever a vertex π(s) is visited we visit all of
its children that have not been visited. Thus, any possi-
ble Forward edge would have been already expanded as
a Tree Edge from π(s).

To construct T with DFS on G(π), we handle each of these
edges in a different way. Tree edges are handled as normal
within the DFS. Cross edges, forward edges, and back edges
are handled as follows:

1. If e = (π(s), s′) is a cross edge, we expand s′ with the
subtree rooted in s′.

2. If e = (π(s), s′) is a back edge, we expand s′ with the
subtree rooted in s′ but excluding the new e = (π(s), s′)
and its children in the subtree.

ComputingG(π) is linear on the number of actions and states
in π. DFS is linear on the number of edges and vertices in
G(π). Because every s ∈ V is reachable from s0, then every
s ∈ V is visited during DFS. Therefore, because every edge
is expanded at most once (we ignore the expanded edge in the
expansion), computing T is polynomial, ((V + E) ∗ E).

Figure 2 showcases an example of expanding a cross edge
e = (π(s2), s1) (as seen in Figure 1). We make a copy of the
sub tree rooted at s1 and point the edge from π(s2) towards
the copy. Forward edges are handled similarly.

Figure 3 showcases an example of expanding the back e =
(π(s3), s0) (as seen in Figure 1). We make a copy of the sub
tree rooted at s0 and point the edge from π(s3) to the copy.
The other expanded cross edges have been copied over in the
sub tree.

We use the plan tree T to define the expectations Xs and
Xπ(s) for every vertex in G(π). If s (or π(s)) occurs more
than once in T , then we take the final expectations X in the
node that was visited first in the DFS procedure, and set all
s (or π(s)) expectations to X . This is because if it is visited
first by DFS, it will be visited last while calculating the ex-
pectations therefore having the final value (As shown later).
We define policy goal regression X in T for actions in the
policy as follows:

1. If s = s0 in T , for every variable v ∈ VXπ(s)
, Xs(v) =

Xπ(s)(v).

2. If s 6= s0, we define Xs as follows. Let effπ(sj)s be the
effects of the preceding action π(sj), the parent of s in
T , making sj the grandparent of s in T . If s is not a leaf
in T , for all v ∈ VXπ(s)

- V
eff

π(sj)
s

, Xs(v)=Xπ(s)(v).

If s is a leaf in T , for all v ∈ Vg - V
eff

π(sj)
s

, Xs(v) =

{(g(v), 1.0)}

Figure 2: An example of an expanded a cross edge in G(π)
from Figure 1

3. If π(s) ∈ T , let {s1, . . . , sn} be the children of π(s) in
T and preπ(s) be the preconditions of π(s). We define
Xπ(s) as follows:

(a) For all v ∈ Vpreπ(s) , Xπ(s)(v) =

{(preπ(s)(v), 1.0)}.
(b) if v is found k times in {VXs1 , ..., VXsn }-Vpreπ(s)

(i.e., k ≤ n) with associated (value, probability)
pairs (c, p1),..., (c, pk). Then, (c, (p1 + ...pk)/n) ∈
Xπ(s)(v). Xπ(s)(v) will consist of a set of (c, (p1+
...pk)/n) pairs, one for each possible value of v
among the expectations of its children.

To show an example of Policy Goal Regression
Expectations, we define the following actions on
T (namea, prea, Effa):

• (π(s0), {(C, 1)}, {{(D, 1)}, {(A, 1)}, {(B, 1)}});

• (π(s2), {(A, 1)}, {{(D, 1)}});

• (π(s3), {(B, 1)}, {{(D, 1)}, {(B, 0)}}).

The starting state is s0={(A, 0), (B, 0), (C, 1), (D, 0)} and
the goal is g = {(D, 1)}.

Figure 4 shows T with the regression expectations. For
example, to calculate Xs1 , the parent of s1 is π(s0), with
the grandparent being s0. Since s1 is a leaf, and Vg -
V
eff

π(sj)
s

is {}, Xs1={}. We calculate Xπ(s0) as follows:

for π(s0), preπ(s0)={(C, 1)}. Thus we add (C, 1, 1.0) into
Xπ(s0)(i.e., Xπ(s0)(C) = (1, 1.0)). Now we examine the
children {s1, s2, s3} of π(s0). Since only C is defined in
the expectations of the children, and C was in the precon-
ditions, we do nothing. Therefore Xπ(s0)={(C, 1, 1.0)}. We
calculate Xs2 as follows: The parent of s2 is π(s0), with the
grandparent being s0. The effects of π(s0) along the edge
(π(s0),s2)={(A, 1)}. Thus, A is ignored from Xπ(s2). With
no other variables in Xπ(s2), X(s2)={}. When all is finished,
we have the expectations for the actions in the policy π:

• π(s0) : Xπ(s0) = {(C, 1, 1.0)}
• π(s2) : Xπ(s2) = {(A, 1, 1.0)}

Figure 3: An example of an expanded a back edge in G(π)
from Figure 1

• π(s3) : Xπ(s3) = {(B, 0, 1.0), (C, 1, .5)}
We define policy goal regression X in T for states in the
policy as follows: For every non-terminal state s in the policy,
we set Xs=Xπ(s). For all terminal states s, which in this case
are goal states, we set the expectations as follows: For all
v ∈ Vg , Xs(v) = (g(v), 1.0).

5 Goldilocks Expectations and Detecting
Discrepancies

The Goldilocks expectations take into account effects of ac-
tions (as in informed expectations) while also incorporating
regression expectations. To compute Goldilocks expecta-
tions, we modify case 2 for Policy Goal Regression Expec-
tations as follows.

2. If s 6= s0, we define Xs as follows. Let effπ(sj)s be the
effects of the preceding action π(sj), the parent of s in
T , making sj the grandparent of s in T .

• For all v ∈ V
eff

π(sj)
s

, Xs(v)={(Xinfsj
(v), 1.0)}.

• If s is not a leaf in T : For all v ∈ VXπ(s)
- V

eff
π(sj)
s

,

Xs(v)=Xπ(s)(v).
• If s is a leaf in T : For all v ∈ Vg - V

eff
π(sj)
s

,

Xs(v)={(g(v), 1.0)}.

We re-examine the same example as before, but this time
using Goldilocs Expectations (Figure 5). The actions, the

Figure 4: The plan tree T with calculated Policy Goal Regres-
sion Expectations

starting state and goals are the same. For example, to calcu-
lateXs1 , the parent of s1 is π(s0), with the grandparent being
s0. The effects of π(s0) along the edge (π(s0),s1)={(D, 1)}.
Thus, (D, s0(D), 1.0) is added toXs1 where s0(D)=0. Since
s1 is a leaf,Xs1={(D, 0, 1.0)} (i.e.,Xs1(D)={(0, 1.0)}). We
calculate Xπ(s0) as follows: for π(s0), preπ(s0)={(C, 1)}.
Thus we add (C, 1, 1.0) into Xπ(s0). Now we examine the
children {s1, s2, s3} of π(s0): (D, 0) is defined 3 times in
the children expectations; adding p from each (D, 0, p) in
the children expectations (1+1+1) and dividing by the num-
ber of children (3), we get 1.0, and add (D, 0, 1.0) in Xπ(s0).
(B, 0) is defined once with p = 1.0 dividing by 3, we get .333
and add (B, 0, .333) in Xπ(s0). (A, 0) is defined twice with
p = 1.0 and p = .167 added together and divided by 3, we get
.583. So we add (A, 0, .583) in Xπ(s0). After appending all
of these (v, c, p) triples to the expectations, we get Xπ(s0) =
{(A, 0, .583), (B, 0, .333), (C, 1, 1.0), (D, 0, 1.0)}. We cal-
culate Xs2 as follows: The parent of s2 is π(s0), with the
grandparent being s0. The effects of π(s0) along the edge
(π(s0),s2)={(A, 1)}, where s0(A)=0. Thus, (A, 0, 1.0) is
added to Xs2 . Next we look to the child of s2, π(s2). We
ignoreA since it was in V

eff
π(s0)
s2

, which leaves (D, 0, 1.0) to

be added to Xs2 . Thus Xs2={(A, 1, 1.0), (D, 0, 1.0)} When
all is finished, we have our policy with expectations π:

• π(s0) :

Xπ(s0) = {(A, 0, .583), (B, 0, .333), (C, 1, 1.0), (D, 0, 1.0)}

Figure 5: The plan tree T with modified Policy Goal Regres-
sion Expectations for Goldilocks Expectations

• π(s2) : Xπ(s2) = {(A, 1, 1.0), (D, 0, 1.0)}
• π(s3) : Xπ(s3) = {(A, 0, .167), (B, 0, 1.0), (C, 1, .5),

(D, 0, 1.0)}.

Discrepancies. We define a discrepancy as follows: if in
the observed state s, s(v) = c, for all (c′, p) ∈ Xs(v) where
c′ 6= c we sum the p’s to obtain the probability P that the
plan will fail. This is because P is the percentage of descen-
dant leaf vertices that are no longer reachable if Xs(v) = c.
A discrepancy occurs if P > 0.5. We choose .5 as a thresh-
old as it denotes that more than half the remaining tree is no
longer reachable and therefore the execution of the policy is
more likely to fail than not assuming equal distribution of the
nondeterministic outcomes.

Informed expectations are necessary in cases where the
goals achieved by the policies are unknown. For example, in
our case, we used an ND HTN planner to generate the poli-
cies. In HTN planning tasks not goals are used to specify
the problems. Using informed expectations infer the possible
goals achieved at every terminal state. Regression expecta-
tions on these possible goals ensure the ability of the plan
to reach the terminal states. By combining both forms of
expectations, Goldilocks assures the policy will reach a ter-
minal state and the possible goals will be achieved. We call
these Goldilocks after the character of the Goldilocks and the
Three Bears fairy tale. The Goldilocks expectations are the
best fit when we don’t know the goals compared to regression

and informed expectations. Our empirical evaluation demon-
strates this. In cases where the goals g are explicitly known,
policy goal regression is sufficient. Goldilocks works when
the goals g are unknown, because of the incorporation of In-
formed expectations. Informed expectations accumulates all
effects created by the agent, some subset of which must be
the goals.

6 Empirical Evaluation
In our experiments, we computed 4 expectation types: regres-
sion, immediate, informed, and Goldilocks. Aside from the
different expectations, the GDA agent was the same. The per-
formance metric is the same as in [Dannenhauer et al., 2016]:
the cost of solving the problem. These agents executed ac-
tions, until they reach a terminal node. At that point we check
if the goals are satisfied, and if they are not the execution is
considered a failure.

Figure 6: Expectation Costs for Arsonist Domain

Figure 7: Failure rates for expectations in Arsonist Domain

Our tests were conducted in a variant of the Arsonist do-
main [Paisner et al., 2013], which is itself a modified version
of Blocks World. The goal is to make a tower of 10 blocks.
There is an arsonist that is arbitrarily setting blocks on fire.
The cost of a problem is the cumulated number of actions
where a block is on fire (each block adds 1 point for every
action it’s on fire). The possible actions for the agent in the
Arsonist domain are the usual stack and unstack a block,
both requiring the block not to be on fire, with an added action
to douse a fire. In our variant, actions have nondeterministic
effects: stacking a block on top of another block has an equal
probability of being successful or knocking the entire tower
over. A failure occurs if any block in the tower is on fire or
if the tower is not 10 blocks tall when the agent finishes ex-
ecuting actions. It is possible even with an ND plan for the
agent to finish executing with a tower less than 10 blocks tall,
because the agents knowledge of the state is limited by the
form of expectation that the agent is using.

Figure 6 compares costs between Immediate, Regression,
Informed, and Goldilocks expectations. Informed expecta-
tions had by far the highest cost. This is because blocks were
allowed to burn until they were taken to stack onto the tower;
the agent using informed expectations had no way of know-
ing which blocks it would eventually use. Regression and
Immediate expectations performed similarly, with Regression
barely outperforming Immediate. They have such low costs
because their expectations have no knowledge of previously
stacked blocks, and thus do not know if the last stack action
knocked over the tower. They each performed the necessary
stack and unstack actions to build the tower determin-
istically, resulting in 10 actions per problem. This was not
enough time for many blocks to catch on fire therefore they
could not accumulate a large cost. Both expectations had near
100% failure rates (as seen in Figure 7), however, due to the
same lack of knowledge in the expectations. Goldilocks had
a cost well below Informed expectation, and a failure rate of
0%. This is because it had the knowledge of which blocks
it would eventually use in the tower and could put the fires
out immediately. Goldilocks also knew about which blocks
had been stacked in the tower already allowing it to tell if the
tower fell over or if a placed block caught on fire.

7 Related Work
The GDA framework is general allowing a variety of planning
paradigms. GDA research has used both STRIPS planning
[Molineaux et al., 2010] and MDP-based planning [Jaidee
et al., 2013]. However, until now, GDA works compute ex-
pectations by examining the action sequence executed so far,
what we dubbed πprefix. In contrast, our work extends the
notion of expectations to explicitly consider policies.

The use of goal regression has been investigated to deter-
mine the weakest preconditions needed to execute a plan and
use these to compute similarity between plans in case-based
planning [Veloso and Carbonell, 1993]. Goal regression has
also been used to avoid unnecessary replanning in the context
of optimal planning [Fritz and McIlraith, 2007]. In both of
these works regression is performed for deterministic plan-
ning, when the solutions to planning problems are sequences

of actions. In our work, we are defining goal regression for
nondeterministic planning when solutions are policies.

The study of expectation failures has a long-standing tra-
dition. Mechanisms to enhance a domain description when
planning failures occur have been proposed (e.g., [Birnbaum
et al., 1990; Sussman, 1975]). Plan-execution monitoring
systems check if the current state satisfies the effects of the
action just executed and the preconditions of the actions to
be executed next. When this does not happen, and as a result
the action is inapplicable, this is called an expectation fail-
ure [Cox, 2007]. Other kinds of failures have been proposed
where even though they are not execution failures, the current
execution exhibits conditions that are not desirable [Myers,
1999]. Others have suggested failures associated with quality
conditions [Fritz and McIlraith, 2007].

GDA focuses on the meta-process of goal reasoning. Some
planning systems relax the requirement that the plan must
achieve all of its goals. For example, oversubscription plan-
ners attempt to satisfy a maximal subset of the goals instead
of all of the goals [Van Den Briel et al., 2004]. In GDA
goals might change as a reaction to changes in the environ-
ment. In that sense GDA is related to plan repair, which aims
at modifying the current plan when changes in the environ-
ment make actions in the plan invalid [Van Der Krogt and
De Weerdt, 2005; Warfield et al., 2007]. The main difference
between plan repair and GDA is that in the latter the goals
might change whereas plan repair sticks with the same goals
while searching for alternative plans.

Other works have explored goal reasoning capabilities in
environments were the outcomes of the actions maybe un-
certain [Karneeb et al., 2016; Floyd et al., 2017; Wilson
et al., 2014]; however, those works model solutions as se-
quence of actions, unlike policies as in our work. These
works use what we call state expectations: the agent main-
tains the expected resulted state following each action and
these are matched against the partially-observed state. [Wil-
son et al., 2014] projects forward continuous variables with
their expected variables that are expected to be within an in-
terval defined by a lower and upper bound on the linear se-
quence of actions. This work also maintains state expecta-
tions.

8 Conclusions
In this paper we re-examine the notion of expectations in the
context of GDA: immediate and informed expectations, both
of which are based on the sequence of actions πpreffix exe-
cuted so far. We introduce two new form of expectations: (1)
regression which is defined based on the possible trajectories
from the starting state to goal states; (2) Goldilocks which
combines the informed and regression expectations We re-
port on a comparative study of these four forms of expecta-
tions on the Arsonist domain. Goldilocks and informed ex-
pectations are the only ones reaching terminal states without
failures (i.e., goals are achieved). However, informed expec-
tations do so having the higher costs than Goldilocks.

For future work, we plan to extend our work for situations
where probability distributions on the ND effects are known.
Hence, these will need to be aggregated over the regressed

and Goldilocks expectations. We expect that defining these
will benefit from Bayesian inferencing mechanisms. We will
also explore defining Goldilocks expectations for domains
with continuous variables.

Acknowledgements. This research was supported by ONR
under grant N00014-18-1-2009 and by NSF under grant
1217888.

References
[Birnbaum et al., 1990] Lawrence Birnbaum, Gregg Collins,

Michael Freed, and Bruce Krulwich. Model-based diagno-
sis of planning failures. In AAAI, volume 90, pages 318–
323, 1990.

[Cox, 2007] Michael T Cox. Perpetual self-aware cognitive
agents. AI magazine, 28(1):32, 2007.

[Dannenhauer and Munoz-Avila, 2015] Dustin Dannen-
hauer and Hector Munoz-Avila. Raising expectations in
gda agents acting in dynamic environments. In IJCAI,
pages 2241–2247, 2015.

[Dannenhauer et al., 2016] Dustin Dannenhauer, Hector
Munoz-Avila, and Michael T Cox. Informed expectations
to guide gda agents in partially observable environments.
In IJCAI, pages 2493–2499, 2016.

[Floyd et al., 2017] Michael W Floyd, Justin Karneeb, Philip
Moore, and David W Aha. A goal reasoning agent for con-
trolling uavs in beyond-visual-range air combat. In Pro-
ceedings of the 26th International Joint Conference on Ar-
tificial Intelligence, pages 4714–4721. AAAI Press, 2017.

[Fritz and McIlraith, 2007] Christian Fritz and Sheila A
McIlraith. Monitoring plan optimality during execution.
In ICAPS, pages 144–151, 2007.

[Jaidee et al., 2011] Ulit Jaidee, Héctor Muñoz-Avila, and
David W Aha. Integrated Learning for Goal-Driven Au-
tonomy. In Proceedings of the Twenty-Second interna-
tional joint conference on Artificial Intelligence-Volume
Volume Three, pages 2450–2455. AAAI Press, 2011.

[Jaidee et al., 2013] Ulit Jaidee, Héctor Muñoz-Avila, and
David W Aha. Case-based goal-driven coordination of
multiple learning agents. In International Conference on
Case-Based Reasoning, pages 164–178. Springer, 2013.

[Karneeb et al., 2016] Justin Karneeb, Michael W Floyd,
Philip Moore, and David W Aha. Distributed discrepancy
detection for bvr air combat. In Proceedings of the IJCAI
Workshop on Goal Reasoning, New York, 2016.

[Molineaux and Aha, 2014] Matthew Molineaux and
David W Aha. Learning unknown event models. In AAAI,
pages 395–401, 2014.

[Molineaux et al., 2010] Matthew Molineaux, Matthew
Klenk, and David W Aha. Goal-Driven Autonomy in a
Navy Strategy Simulation. In AAAI, 2010.

[Myers, 1999] K. L. Myers. A continuous planning and exe-
cution framework. AI Magazine, pages 63–69, 1999.

[Paisner et al., 2013] Matt Paisner, Michael Maynord,
Michael T Cox, and Don Perlis. Goal-driven autonomy in
dynamic environments. In Goal Reasoning: Papers from
the ACS Workshop, page 79, 2013.

[Sussman, 1975] Gerald J. Sussman. HACKER, a Computer
Model of Skill Acquisition. Elsevier, 1975.

[Van Den Briel et al., 2004] Menkes Van Den Briel, Romeo
Sanchez, Minh Binh Do, and Subbarao Kambham-
pati. Effective approaches for partial satisfaction (over-
subscription) planning. In AAAI, pages 562–569, 2004.

[Van Der Krogt and De Weerdt, 2005] Roman Van
Der Krogt and Mathijs De Weerdt. Plan repair as an
extension of planning. In ICAPS, volume 5, pages
161–170, 2005.

[Veloso and Carbonell, 1993] Manuela M. Veloso and
J. Carbonell. Derivational analogy in PRODIGY:
Automating case acquisition, storage and utilization.
Machine Learning, 10(3):249–278, 1993.

[Warfield et al., 2007] Ian Warfield, Chad Hogg, Stephen
Lee-Urban, and Héctor Munoz-Avila. Adaptation of hier-
archical task network plans. In FLAIRS conference, pages
429–434, 2007.

[Weber et al., 2010] Ben George Weber, Michael Mateas,
and Arnav Jhala. Applying goal-driven autonomy to star-
craft. In AIIDE, 2010.

[Weber et al., 2012] Ben George Weber, Michael Mateas,
and Arnav Jhala. Learning from demonstration for goal-
driven autonomy. In AAAI, 2012.

[Wilson et al., 2014] Mark A Wilson, James McMahon, and
David W Aha. Bounded expectations for discrepancy de-
tection in goal-driven autonomy. In AI and Robotics: Pa-
pers from the AAAI Workshop, 2014.

