
Generating Plans for Qualitative Goal Preferences

Cory Siler and Michael T. Cox
Wright State Research Institute

Beavercreek, OH 45431

Abstract
When an autonomous agent can achieve only a sub-
set of its goals, it must consider how pursuing one
goal affects another, as well as which goals are
most valuable in themselves. If the relative val-
ues of goals are quantifiable, goal selection might
be done within a standard oversubscription planner.
However, if the agent bases its priorities on prefer-
ences expressed by a human, it is likely to have only
incomplete, qualitative knowledge of these pref-
erences. We consider goal selection via planning
when goal preferences are given as a partial or-
der. We show how to use answer set programming
to generate a set of optimal plans, where a plan’s
optimality is determined by the goals it achieves.
Our experiments on a benchmark planning domain
demonstrate how plan generation and goal selec-
tion are constrained as additional preference infor-
mation is added.

1 Introduction
Problems in complex environments require the achievement
of many goals for a satisfactory solution. Classical planning
technology attempts to create a single plan that achieves all
current goals no matter how many and how diverse they may
be. Not all goals are equally valuable or easy to achieve, and
some goals belong together; whereas others require distinctly
different plans. An intelligent agent will reason about the
characteristics of its goals, their desirability, and the relation-
ships between them to decide which ones to achieve first. Of-
ten such an approach will use a serial pipeline in which the
agent first selects a particular set of goals from its agenda,
creates a plan for them, and then executes the plan to achieve
the goals. Additional refinement typically occurs only in re-
sponse to exogenous events during plan execution. Unfor-
tunately, goal selection and planning are interdependent, and
simple pipeline mechanisms can fail when confronted by neg-
ative interacting conditions.

Consider an autonomous vehicle such as a planetary rover
collecting soil samples or a drone performing search tasks.
These kinds of agents must deal with orienteering problems
[Smith, 2004], where goals are associated with physical sites
and not enough fuel exists to visit all sites. Traveling to

the site of a goal not only consumes resources (fuel) but
also changes the resource costs of achieving other goals (by
changing the vehicle’s distance to other sites). Informative
trade-offs between goals exist that would benefit goal selec-
tion, but many are not known until planning time.

Greedy goal selection based on a heuristic cost-benefit es-
timate is effective in some domains [Kondrakunta, 2017], but
relies on goals being relatively independent of one another.
Alternatively, the brute-force generation of plans for all pos-
sible subsets of an existing goal agenda to evaluate which one
will be most valuable to achieve can be prohibitively expen-
sive computationally. Domains with complex trade-offs be-
tween goals and plans demand a tighter integration of goal
reasoning and planning than a simple plan-first or selection-
first policy.

Planning incorporating goal selection is a well-established
topic within the planning community, and Paredes and Ruml
[2017] go so far as to propose handling all of an agent’s goal
reasoning processes implicitly within online planning. How-
ever, this assumes that the agent has predetermined criteria
about which goals to favor. If the goal priorities are dynamic
and/or exogenous, an explicit goal reasoning module [Hawes,
2011; Roberts et al., 2018; Vattam et al., 2013] should deter-
mine the priorities before planning [Gunderson, 2000].

This is particularly true if the goal priorities are based upon
the high-level preferences of a human as represented by a
military commander’s intent statement or an industry leader’s
corporate vision. In a natural interactions, a human is likely to
give abstract directives that may not provide exact guidance
for every situation as is the case with a fully-specified utility
function. Thus, for realistic mixed-initiative interactions be-
tween intelligent agents and humans, an effective agent must
be able to represent and plan for partial, qualitative prefer-
ences over the goal sets to pursue. This paper proposes qual-
itative goal preferences as a means of efficiently constraining
the generation of plans used for goal selection.

It is possible to have incomparability in such preference
representations, where there are pairs of goal sets for which
no preference relationship between them holds in the model.
The agent faces ambiguity when there are multiple “best”
achievable goal sets due to incomparability: If the incompa-
rability in the model represents an actual lack of preference
by the human, the agent can choose one of the goal sets arbi-
trarily and be confident in its true optimality. But it is possible



that the human actually does have a preference between the
goal sets, and the incomparability in the model simply rep-
resents the agent’s lack of knowledge about the preference;
some choices that are optimal with respect to the model may
turn out to be undesirable for the human. When this ambigu-
ity occurs, the agent should be able to enumerate the possibly-
best goal sets to the human in order to seek clarification.

In this paper, we propose and implement a planning
paradigm that is well-suited to goal reasoning agents based
on the concerns discussed above. Given a planning instance
and qualitative preferences over goals that induce preferences
over plans, our problem is to find a maximal set of opti-
mal plans where each achieves a different goal set. In Sec-
tion 2, we survey existing forms of preference-based plan-
ning and highlight how they differ from ours. In Section 3,
we review relevant planning formalisms and the semantics
we will use to represent goal and plan preferences. In Sec-
tion 4, we show how answer set programming can be used to
find sets of preferred plans. In Section 5, we use our answer-
set-programming-based implementation to show how prefer-
ences affect the plans under consideration in a transportation
planning domain. In Section 6, we summarize our findings so
far and consider directions for future work.

2 Related Work
Preference handling has attracted considerable interest in
AI planning [Baier and McIlraith, 2008]; in fact, PDDL3
[Gerevini and Long, 2006] includes features for specifying
preferences over “soft goals” as well as “soft constraints” on
the plan trajectory. Exemplary problems include net-benefit
partial satisfaction planning [van den Briel et al., 2004],
where the objective is to maximize the plan’s total utility
(of goals achieved) minus cost (of actions taken); and cost-
bounded oversubscription planning [Smith, 2004], where the
objective is to maximize utility without exceeding a given
cost. In general, these use additive utility and cost functions.

In contrast, Pareto-based multiobjective planning
[Khouadjia et al., 2013] does not require the relative
importance of different types of costs and utilities to be
specified; instead of a single objective function, it measures
plan quality with a vector of objective values. One plan
Pareto dominates (in other words, is “strictly better” than)
another if it scores better on some objectives and no worse
on the rest. These planners search for the Pareto front,
consisting of plans that are not Pareto dominated (see Figure
1); any given preference function over the objectives will
have an optimal plan in the Pareto front. Nguyen et al.
[2012] present a multiobjective approach that is conceptually
similar to ours: Given partially-known user preferences
(in their case, the preferences are described quantitatively),
they search for a diverse set of Pareto-front plans that are
also possibly optimal for the user. However, these works
assume there exists a fixed goal that the plan must achieve
the “objectives” are plan-trajectory properties like length and
execution cost rather than goals achieved.

The idea of partial goal preferences is much less explored
in the literature. Brafman and Chernyavsky [2005] and Feld-
mann et al. [2006] introduce algorithms for planning with

Figure 1: Illustration of Pareto dominance with two objec-
tives (one score on each axis).

rich qualitative preference models that induce partial orders
over goal sets. Given a problem instance, these algorithms
find an individual plan achieving a goal set that is optimal
with respect to the partial order. (Other optimal goal sets, in-
comparable to the one achieved by the found plan, may also
exist.)

Specific research in the goal reasoning literature also ap-
plies here. Floyd et al. [2018] have recently investigated
planning with goal preferences in a goal-driven autonomy
[Cox, 2013; Klenk et al., 2013; Molineaux et al., 2010] con-
text. They consider an agent taking initial goals and a par-
tial preference specification from a human commander. The
agent uses these preferences to assign utility values to the ini-
tial goals; when it encounters new goals later, it generates
utilities for these goals as well, making predictions from the
initial preference specification without additional human in-
put.

In summary, prior work in planning with preferences has
considered combinations of these ideas, but not (to our
knowledge) all three together:
• Plan preferences may be known only partially and qual-

itatively.
• Preferences are based on the set of goals achieved by the

plans.
• The planner returns a set of plans that differ with respect

to the preferences.

3 Preliminaries
A classical planning domain is defined [Ghallab et al., 2004]
as a finite state-transition system in which each state s ∈ S
is a finite set of ground atoms. A planning operator is a triple
o = (head(o), pre(o), eff(o)), where pre(o) and eff(o) are
preconditions and effects. Each action, α ∈ A is a ground
instance of some operator o. An action is executable in a
state s if s � pre(α).

For a classical planning domain, the state-transition system
is a tuple Σ = (S,A, γ), where S is the set of all states, and
A is the set of all actions as above. In addition, γ is a state
transition function γ : S×A→ S that returns a resulting state
of an executed action given a current state, i.e., γ(s, α)→ s′.

A classical planning problem is a triple P = (Σ, s0, G),
where Σ is a state transition system, s0 is the initial state, and



each goal g ∈ G is a first-order formula. A state s satisfies a
goal g if s � g. A plan π ∈ Π consists of sequence of plan
steps 〈α1, α2, . . . αn〉 that incrementally changes the world,
starting from the initial state s0; it represents a solution to P
if it results in a final state sn that satisfies all provided goals.
That is, it is a solution if γ(. . . γ(γ(s0, α1), α2) . . . , αn) �∧
g∈G g.
A preference-based planning instance is defined [Baier and

McIlraith, 2008] as a pair I = (P,�Π), where P is a classical
planning problem and �Π is a reflexive, transitive relation in
Π × Π giving a partial preorder over the plans π ∈ Π. If
π �Π π′ but π′ �Π π, we write π �Π π′ and say that π
is preferred to π′ with respect to �Π. We say that a plan π
is optimal with respect to �Π if there is no plan π′ such that
π′ �Π π.

3.1 Qualitative Preferences
In this paper, we are interested in preference-based planning
where the corresponding planning instance I includes an un-
satisfiable problem P — i.e., no plan achieves P ’s entire goal
set G — and the plan preferences are based on the subset of
G achieved by the plans. While this concept is not limited
to a specific preference model (and there exists a rich body
of research on set preferences, e.g., Brewka et al. [2010]), in
this paper we will restrict our attention to a formalism similar
to that of Di Rosa et al. [2010]. In their semantics, a pref-
erence ordering over Boolean literals induces a preference
ordering over assignments to Boolean formulas, favoring as-
signments where more-preferred literals are true; in our con-
text, a preference ordering over goals induces a preference or-
dering over plans, favoring plans where more-preferred goals
are achieved.

Our input language consists of a partial order �G giving
preferences over goals g ∈ G. From this, we define the plan
preferences�Π as follows: Given plans π, π′, letUniqueπ be
the set of goals achieved by π but not by π′, and let Uniqueπ′

be the set of goals achieved by π′ but not by π. It holds that
both π �Π π′ and π′ �Π π iff Uniqueπ = Unique′π = ∅. It
holds that π �Π π′ iff, for each goal g′ ∈ Uniqueπ′ , there is
a goal g ∈ Uniqueπ such that g �G g′.

In other words, one plan is preferred to another if ei-
ther of the following holds – the first achieves all of the
goals achieved by the second, plus some; or each goal
uniquely achieved by the second is less preferred than some
goal uniquely achieved by the first. Two plans are equally-
preferred if they achieve the same goals. Two plans are in-
comparable if none of the above conditions hold.

Example 1 Suppose we have plans for the following goal
sets (refer to Figure 2):

• π1 achieves {g1}
• π2 achieves {g1, g2}
• π3 achieves {g2, g3, g4}
Firstly, note that π1 is suboptimal for any goal preferences;

it achieves a strict subset of the goals achieved by π2. The re-
maining plans are incomparable if we do not have goal pref-
erences relating g1 to g3 and g4.

Figure 2: Illustration of Pareto dominance with two objec-
tives (one score on each axis). Preferences constrain which
plans in the Pareto front are considered optimal.

Now suppose we have the following goal preferences:
g1 �G g2; g1 �G g3; and g3 �G g4 (plus the transitive
closure of these statements). With our preference semantics,
π2 �Π π3, since all of the goals unique to π3 (namely, g3 and
g4) are dominated by a goal unique to π2 (namely, g1).

3.2 Multiobjective Planning
We can generalize our preference semantics to multiobjective
planning where we have numeric goals for which a plan can
achieve varying scores, rather than propositional goals that a
plan simply achieves or fails to achieve.1 Instead of a set of
propositional goals, assume that G is a set of objective func-
tions that yield scores for numeric goals. For plans π, π′, let
Betterπ be the set of objective functions on which π scores
higher, and let Betterπ′ be the set of objective functions on
which π′ scores higher. Then we define �Π with respect to
Betterπ and Betterπ′ in the same way that we defined it
with respect to Uniqueπ and Uniqueπ′ above.

Note that plans optimal with respect to �Π are also Pareto
optimal, but the reverse is not necessarily true. When all
goals/objectives are incomparable with respect to �G, the set
of optimal plans for�Π is equal to the Pareto front; but as the
goal/objective preferences become increasingly strict, their
“projection” onto the Pareto front becomes increasingly nar-
row, as illustrated in Figure 2. When �G is maximally strict
— i.e., a total order —�Π orders the plans lexicographically,
and there is only one optimal goal set 2 or objective vector.

4 Answer Set Planning with Goal Preferences
As described in Section 2, qualitative preference-based plan-
ners exist that find a plan for a single optimal goal set, but

1For instance, we may want the agent to collect as many of a
certain object type as possible; we could have it maximize a single
numeric goal for collecting more objects, rather than keeping sepa-
rate propositional goals for each object.

2We will use “optimal goal set” as shorthand for “goal set achiev-
able by an optimal plan with respect to �Π”; we refer to goal sets
that are optimal among goal sets for which satisfying plans exist,
rather than optimal among all goal sets including the unsatisfiable
ones.



approaches to finding plans for multiple optimal goal sets are
lacking. Rather than building a planner from scratch, we have
approached the planning problem by reducing it to an answer
set program and leveraging existing answer set programming
tools designed for preference-handling.

Before describing our implementation, we will briefly
summarize the syntax and semantics of answer set program-
ming itself. We use the syntactic style of the input language
to the answer set solver Clingo [Gebser et al., 2014], and we
borrow some of our examples from Lifschitz [2008].

4.1 Overview of Answer Set Programming
Answer set programming [Brewka et al., 2011] is a declar-
ative programming paradigm that uses Prolog-like rules but
is geared toward generating solutions to constraint problems
rather than proving answers to queries. The following is an
example of a simple answer set program:
p :- q.
q :- not r.

This program declares that the atom p holds whenever q
holds, and q holds whenever r does not. It has a single an-
swer set: {p,q}.

Note that the not operator denotes default negation rather
than classical negation; for not r to hold, it is sufficient that
r has not been derived. To further illustrate this, the following
program has two answer sets, {q} and {r}:
q :- not r.
r :- not q.

Answer set programming also allows for choice rules that
generate combinations of their elements, as in the following:
{ s ; t }.

This rule allows for answer sets with arbitrary inclusions from
among s and t. The answer sets of the above program are {},
{s}, {t}, and {s,t}.

It is also possible to impose cardinality bounds on a choice
rule, restricting the number of elements that can be generated
together:
1 { s ; t ; u ; v } 3.

In this case, between 1 and 3 atom from among s, t, u, and
v, may be generated in an answer set, but not 0 or 4. We can
also limit what can be generated using a rule without a head,
also known as a constraint:
:- u, v.

A rule with no head prevents answer sets where the body
holds; in this case, an answer set cannot contain both u and
v.

One more relevant feature is the use of predicates over vari-
ables (where a variable terms begins with an uppercase letter,
as opposed to the lowercase of predicates and atoms):
p(a).
p(b).
q(X) :- p(X).

When the last rule is grounded, the variable X is replaced with
atomic terms, producing the rules q(a) :- p(a). and
q(b) :- p(b).; the program has the single answer set
{p(a),p(b),q(a),q(b)}.

4.2 Planning in Answer Set Programming
Answer set programming has been applied to a wide vari-
ety of hard combinatorial search problems, planning being
among them.3 Here we will summarize our own implemen-
tation of STRIPS-style planning rules.

An answer set to our planning program will consist of a
the plan itself — represented by a group of atoms of the
form plan(A,T), giving the choice of an action A for each
timestep T — as well as the auxiliary atoms used to help gen-
erate and constrain of plan. These include atoms of the form
action(A,T), indicating that action A is available (i.e., has
its preconditions met) at time T, and holds(P,T), indicat-
ing that some domain fact P is true at time T.

The following choice rules generate plan steps. The rules
select some action as part of the plan at each timestep from
those that are available, up until some stopping point for the
plan.

1{ plan(A,T) : action(A,T) }1 :-
time(T), not done(T).

1{ done(T) : time(T) }1.

To illustrate how we define the actions themselves, con-
sider the following STRIPS operator from a logistics domain,
which defines the action of loading a package onto a truck:

(:action load
:parameters(

?Pa - package
?Tr - truck
?Lo - location)

:precondition (and
(at ?Tr ?Lo)
(at ?Pa ?Lo))

:effect (and
(not (at ?Pa ?Lo))
(in ?Pa ?Tr))

)

A corresponding definition for our answer set program is
(with lines beginning in “%” being comments):

action(load(Pa,Tr,Lo),T) :-
% Parameter types
package(Pa), truck(Tr), location(Lo),
% Preconditions
holds(at(Tr,Lo),T-1),
holds(at(Pa,Lo),T-1).

% Effects
add(in(Pa,Tr),T) :-

plan(load(Pa,Tr,Lo),T).
delete(at(Pa,Lo),T) :-

plan(load(Pa,Tr,Lo),T).

We express positive and negative action effects in the style
of add and delete lists respectively; then the following rules
declare that a domain fact becomes true in the at a given time
if it appears in a chosen action’s add list, and persists over
time unless it is revoked in a chosen action’s delete list:

3A blocksworld planning program along with several non-
planning examples are executable in the browser-based demo of
Clingo at https://potassco.org/clingo/run/.

https://potassco.org/clingo/run/


% Addition of new domain facts
holds(P,T) :-

add(P,T), time(T).
% Persistence of domain facts
holds(P,T) :-

holds(P,T-1), time(T),
not delete(P,T).

A problem instance provides initial domain facts with
init(P), which are set to true at the initial timestep with
the rule:

holds(P,0) :- init(P).

An instance also includes goals with goal(P), whose
achievement at the end of the plan is checked using:

achieved(P) :- goal(P),
holds(P,T), done(T).

The following rule would require generation only of plans
that achieve all goals, but we exclude it because we are inter-
ested in cases where not all goals can be achieved together:

:- goal(P), not achieved(P).

4.3 Optimizing for Goal Preferences
A particular appeal of answer set programming for our plan-
ning paradigm is the existing support for preference-based
optimization of answer sets [Brewka et al., 2003]. In par-
ticular, the Asprin framework [Brewka et al., 2015] extends
the Clingo solver from generating some or all of a program’s
answer sets to generating some or all of a program’s optimal
answer sets with respect to a given preference model. Asprin
finds all optimal answer sets in an efficient manner by itera-
tively improving upon suboptimal sets, adding constraints to
the program that forbid the generation of a next answer set
that is worse than the previous one. Furthermore, it makes
use of Clingo’s multi-shot solving capabilities [Gebser et al.,
2014] where calls to the solver on changing programs will
reuse data from the previous calls instead of starting the solv-
ing process from scratch.

Asprin has several built-in formalisms for specifying pref-
erences over answer sets based on the atoms they contain
— in our case, specifying preferences over generated plans
based on the goals they achieve as indicated by the atoms
achieved(P). Of particular interest is Asprin’s poset
preference type, which implements Di Rosa et al.’s qualita-
tive preferences [2010] on which we model our goal prefer-
ences as defined in Section 3.1.

When we have preferences �G over goals, we add
to our planning instance a statement of the form
prefer(p1,p2). for each comparison p1 �G p2.
We instruct Asprin to optimize for these preferences with the
preference program:

#preference(goalprefs,poset){
achieved(P1) >> achieved(P2) :

prefer(P1,P2);
achieved(P) : goal(P)

}.
#optimize(goalprefs).

The #preference directive creates a preference relation
named goalprefs using the poset semantics. Its defini-
tion states that one goal is preferred to another if the instance
pairs them with the prefer predicate; and that, all else be-
ing the same, achieving a goal is preferred to not achieving it.
The #optimize directive instructs Asprin to use this pref-
erence relation for optimization.

We can extend this to numeric goals if the scores come
from a bounded range of integers. Assume the instance de-
clares numeric goals numgoal(N) and defines a predicate
score(N,S) giving scores S for numeric goals N. Then the
following program implements the numeric-goal version of
our qualitative preferences:
score(N,0..S) :- score(N,S).
#preference(numgoalprefs,poset){

score(N1,S1) >> score(N2,S2) :
prefer(N1,N2),
numgoal(N1), numgoal(N2),
score(_,S1), score(_,S2);

score(N,S) : numgoal(N), score(_,S)
}.
#optimize(numgoalprefs).

5 Experiments
We will now describe how we used our implementation to in-
vestigate the relationship between the relationship between
strictness of goal preferences and the number of optimal
achievable goal sets. 4

In theory, preference strictness and the number of optimal
plans or goal sets are negatively correlated: Let �G and �′

G
be goal preference orderings that induce plan preferences�Π

and �′
Π respectively. If the comparisons in �G are a superset

of the comparisons in�′
G, then the optimal plans with respect

to�Π will be a subset of the optimal plans with respect to�′
Π.

As comparisons are added, the set of optimal plans converges
toward the set only of those plans that achieve one particular
goal set.

The empirical question is how quickly the addition of goal
preferences reduces the space of optimal achievable goal sets.
Ideally, we want an agent to be able to greatly reduce the
number of goal sets under consideration with only a hand-
ful of preference statements given by a human, thus reducing
both the communication burden on the human to give thor-
ough preferences and the computational burden on the agent
to consider a wide space of plans.

The pattern of convergence will vary across planning do-
mains and instances, so we cannot characterize it universally.
We instead focus on a domain representative of the vehicle-
related problems that we discussed in Section 1 to motivate
combined goal selection and planning — namely, Steinmetz
and Hoffmann’s NoMystery benchmark [2016] as used in the
2016 Unsolvability International Planning Competition.5

4Note that goal preferences do not affect the number of overall
achievable goal sets; the only change is in which of those goal sets
are considered optimal.

5PDDL domain files and generators for competition
benchmarks are available at https://bitbucket.org/
planning-researchers/unsolve-ipc-2016.

https://bitbucket.org/planning-researchers/unsolve-ipc-2016
https://bitbucket.org/planning-researchers/unsolve-ipc-2016


Figure 3: Unique optimal goal sets among NoMystery in-
stances. Preference strictness increases from left to right.

NoMystery is a transportation domain with trucks, loca-
tions, and packages. A truck can drive between locations and
load and unload packages at those locations. Each package
has an associated goal of delivering it to a particular loca-
tion. Trucks expend some of their limited fuel supply when
they drive. A distinguishing feature of NoMystery is that the
generator takes a parameter c that scales the fuel availability;
c = 1 means the trucks have exactly the minimum amount of
fuel to deliver all packages, c = 2 means there is twice that
amount of fuel, and so on. We used c < 1, preventing any
given plan from delivering every package.

We used the following parameters to generate instances: 1
truck, 10 locations, and 10 packages to deliver, with equal
numbers of nodes and edges in the location graph (where
nodes represent locations and edges indicate that the truck can
go between the locations in a single drive action) and equal
fuel costs for each travel action. We generated 10 distinct
instances, with versions of each instance for fuel constrained-
ness c = .5, c = .7, and c = .9. We processed the PDDL
specifications of the instances to create equivalent versions
for the answer set program described in Section 4.2.

In addition, for each distinct instance we generated pref-
erences over the package delivery goals at varying levels
of strictness as follows: Let p1, p2, · · · , p10 be the pack-
age delivery goals. For maximum strictness, we imposed
a total order by generating comparisons p1 �G p2, p2 �G
p3, · · · , p9 �G p10. Then, to generate a less-strict preference
ordering, we deleted one of those comparisons at random,
in essence breaking the “chain” of goal preferences into two
pieces. We repeated this process until all comparisons were
deleted.

We ran Clingo with Asprin on each instance with each of
its fuel constraints and goal preference orderings; we had As-
prin find all optimal goal sets. Figure 3 shows the relationship
between number of direct comparisons in the goal preference
ordering (i.e., not counting the transitive closure) and the av-
erage number of optimal goal sets with respect to those pref-
erences.

The number of optimal goal sets in our experiments de-

clined in a roughly linear fashion as the number of direct com-
parisons increased. We also observe that the c = .5 versions
had fewer optimal goal sets on average than the versions with
higher values of c. This is in part because with less initial
fuel, there are more packages that the truck cannot deliver in
any plan, whereas with additional fuel they can be delivered
at the expense of other goals.

Overall, these results suggest that the Pareto front of goal
sets is largest when the amount of available resources is
plenty for individual goals while still being inadequate for
achieving all goals together. The impact of qualitative pref-
erences on eliminating Pareto-front goal sets scales with the
size of the Pareto front itself. Still, the convergence of the
number of optimal goal sets may be too slow in situations
where a human provides only a very sparse preference speci-
fication; thus, it would be valuable for an agent to guess some
of the human’s unstated preferences [Floyd et al., 2018] to
help further constrain the goal sets under consideration.

6 Conclusions
Goal reasoning agents interacting with humans in realistic
settings will often need to select goals based on loosely-
specified human preferences; when the specification is too
vague for a particular problem, the agent should consider so-
lutions based on differing interpretations of the preferences.
In this paper, we have explored a planning paradigm based
on this idea and shown how a preference-handling frame-
work for answer set programming can be leveraged to gener-
ate sets of preferred plans. We do not claim to have designed
any sort of state-of-the-art planner; rather, our contribution
is to highlight a way in which goal reasoning, planning, and
preference-based knowledge representation can be bridged to
help create more-flexible autonomous agents.

Direct algorithms for our planning paradigm, as opposed
to reductions like the one presented here, are an open area
of investigation. A specialized planner, using a qualitative-
preference-handling extension of PDDL like the one intro-
duced by by Feldmann et al. [2006], may be worthwhile;
recent empirical evidence by Jiang et al. [2018] suggests that
PDDL-based planners scale better than answer set planners
when longer plans are needed, because of the grounding bot-
tleneck in answer set programming.

However, Jiang et al.’s experiments also suggest that an-
swer set planners scale better than PDDL-based planners to
domains that require more-complex reasoning — the same
sorts of domains for which we would build goal-reasoning
agents to begin with. Answer set planning is also attractive
because of the ease of specifying new extensions to existing
planning languages, the ability to define a wide variety of plan
and goal preferences beyond the ones considered here, and
efficient plan repair through multi-shot solving when new in-
formation is discovered that invalidates an existing plan.

The potential applications of answer set programming to
goal reasoning extend beyond planning and goal selection.
Consider the process of discrepancy detection, explanation,
and goal generation in goal-driven autonomy. In place of our
holds(P,T) predicate, a goal-driven autonomous agent
might produce a series of expected(P,T) facts during



planning, and add observed(P,T) facts as it perceives the
world; a fact that is expected or observed but not both is
a possible discrepancy. A choice rule can be used to generate
sets of facts that might explain a given discrepancy, yielding
different answer sets for the possible worlds entailed by dif-
ferent explanations. A preference-handling framework like
Asprin can be used to evaluate not only which solutions to
problems are more desirable, but also which possible worlds
are considered more plausible; the agent can then focus its
goal generation on the explanations in which it has the most
credence.

Acknowledgments
This material is based on research sponsored by the Air Force
Research Laboratory, under agreement number FA8650-16-
C-6763. This research was also supported by AFOSR grant
FA2386-17-1-4063. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or implied, of
the Air Force Research Laboratory or the U.S. Government.

References
[Baier and McIlraith, 2008] Jorge A Baier and Sheila A

McIlraith. Planning with preferences. AI Magazine,
29(4):25–37, 2008.

[Brafman and Chernyavsky, 2005] Ronen I Brafman and
Yuri Chernyavsky. Planning with goal preferences and
constraints. In International Conference on Automated
Planning and Scheduling, pages 182–191, 2005.

[Brewka et al., 2003] Gerhard Brewka, Ilkka Niemela, and
Miroslaw Truszczynski. Answer set optimization. In Inter-
national Joint Conference on Artificial Intelligence, pages
867–872. Morgan Kaufmann Publishers Inc., 2003.

[Brewka et al., 2010] Gerhard Brewka, Mirosław
Truszczyński, and Stefan Woltran. Representing
preferences among sets. In AAAI Conference on Artificial
Intelligence, pages 273–278. AAAI Press, 2010.

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Mirosław Truszczyński. Answer set programming at a
glance. Communications of the ACM, 54(12):92–103,
2011.

[Brewka et al., 2015] Gerhard Brewka, James P Delgrande,
Javier Romero, and Torsten Schaub. asprin: Customizing
answer set preferences without a headache. In AAAI Con-
ference on Artificial Intelligence, pages 1467–1474, 2015.

[Cox, 2013] Michael T Cox. Question-based problem recog-
nition and goal-driven autonomy. In Goal Reasoning: Pa-
pers from the ACS workshop, pages 10–25. University of
Maryland, Department of Computer Science, 2013.

[Di Rosa et al., 2010] Emanuele Di Rosa, Enrico
Giunchiglia, and Marco Maratea. Solving satisfiability
problems with preferences. Constraints, 15(4):485–515,
2010.

[Feldmann et al., 2006] Robert Feldmann, Gerhard Brewka,
and Sandro Wenzel. Planning with prioritized goals. In In-
ternational Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 503–514, 2006.

[Floyd et al., 2018] Michael W Floyd, Mark Roberts, and
David Aha. Hybrid goal selection and planning in a goal
reasoning agent using partially specified preferences. In
Florida Artificial Intelligence Research Society Confer-
ence, 2018. Poster abstract.

[Gebser et al., 2014] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Clingo= ASP+ con-
trol: Preliminary report. arXiv preprint arXiv:1405.3694,
2014.

[Gerevini and Long, 2006] Alfonso Gerevini and Derek
Long. Preferences and soft constraints in PDDL3. In
ICAPS Workshop on Planning with Preferences and Soft
Constraints, pages 46–53, 2006.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: Theory and Practice. El-
sevier, 2004.

[Gunderson, 2000] James P Gunderson. Adaptive goal pri-
oritization by agents in dynamic environments. In IEEE
International Conference on Systems, Man, and Cybernet-
ics, volume 3, pages 1944–1948. IEEE, 2000.

[Hawes, 2011] Nick Hawes. A survey of motivation frame-
works for intelligent systems. Artificial Intelligence,
175(5-6):1020–1036, 2011.

[Jiang et al., 2018] Yuqian Jiang, Shiqi Zhang, Piyush Khan-
delwal, and Peter Stone. An empirical comparison of
PDDL-based and ASP-based task planners. 2018.

[Khouadjia et al., 2013] Mostepha Redouane Khouadjia,
Marc Schoenauer, Vincent Vidal, Johann Dréo, and Pierre
Savéant. Pareto-based multiobjective AI planning. In
International Joint Conference on Artificial Intelligence,
pages 2321–2327. AAAI Press, 2013.

[Klenk et al., 2013] Matthew Klenk, Matt Molineaux, and
David W Aha. Goal-driven autonomy for responding to
unexpected events in strategy simulations. Computational
Intelligence, 29(2):187–206, 2013.

[Kondrakunta, 2017] Sravya Kondrakunta. Implementation
and evaluation of goal selection in a cognitive architecture.
Master’s thesis, Wright State University, 2017.

[Lifschitz, 2008] Vladimir Lifschitz. What is answer set pro-
gramming? In AAAI Conference on Artificial Intelligence,
volume 8, pages 1594–1597. AAAI Press, 2008.

[Molineaux et al., 2010] Matt Molineaux, Matthew Klenk,
and David W Aha. Goal-driven autonomy in a Navy strat-
egy simulation. In AAAI Conference on Artificial Intelli-
gence, pages 1548–1554. AAAI Press, 2010.

[Nguyen et al., 2012] Tuan Anh Nguyen, Minh Do, Al-
fonso Emilio Gerevini, Ivan Serina, Biplav Srivastava, and
Subbarao Kambhampati. Generating diverse plans to han-
dle unknown and partially known user preferences. Artifi-
cial Intelligence, 190:1–31, 2012.



[Paredes and Ruml, 2017] Alison Paredes and Wheeler
Ruml. Goal reasoning as multilevel planning. ICAPS-
2017 Workshop on Integrated Execution of Planning and
Acting, page 36, 2017.

[Roberts et al., 2018] Mark Roberts, Daniel Borrajo,
Michael T Cox, and Neil Yorke-Smith, editors. AI
Communications: Special issue on goal reasoning. IOS
Press, 2018.

[Smith, 2004] David E Smith. Choosing objectives in over-
subscription planning. In International Conference on Au-
tomated Planning and Scheduling, pages 393–401. AAAI
Press, 2004.

[Steinmetz and Hoffmann, 2016] Marcel Steinmetz and Jörg
Hoffmann. Towards clause-learning state space search:
Learning to recognize dead-ends. In AAAI Conference on
Artificial Intelligence, pages 760–768. AAAI Press, 2016.

[van den Briel et al., 2004] Menkes van den Briel, Romeo
Sanchez, Minh B Do, and Subbarao Kambhampati. Effec-
tive approaches for partial satisfaction (over-subscription)
planning. In National Conference on Artificial Intelli-
gence, pages 562–569. AAAI Press, 2004.

[Vattam et al., 2013] Swaroop Vattam, Matthew Klenk,
Matthew Molineaux, and David W Aha. Breadth of ap-
proaches to goal reasoning: A research survey. In Goal
Reasoning: Papers from the ACS Workshop, pages 111–
126. University of Maryland, Department of Computer
Science, 2013.


	Introduction
	Related Work
	Preliminaries
	Qualitative Preferences
	Multiobjective Planning

	Answer Set Planning with Goal Preferences
	Overview of Answer Set Programming
	Planning in Answer Set Programming
	Optimizing for Goal Preferences

	Experiments
	Conclusions



