
Dynamic Goal Decomposition and Planning in MAS
for Highly Changing Environments

Stefania Costantini and Giovanni De Gasperis
Diartimento di Ingegneria e Scienze dell’Informazione e Matematica (DISIM),

Università degli Studi dell’Aquila, I-67100, L’Aquila, Italy
email: {stefania.costantini, giovanni.degasperis}@univaq.it

Abstract
This paper treats the problem of dynamic goal de-
composition and planning in scenarios character-
ized by a strong inter-dependency between action
and context, for instance the ones related to the
rescue intervention in a territory upon occurrence
of some kind of catastrophic event We propose
an architecture that integrates DALI MASs (Multi-
Agent Systems) and ASP (Answer Set Program-
ming) modules for reaching goals in a flexible and
timely way, where DALI is a computational-logic-
based fully implemented agent-oriented logic pro-
gramming language and ASP modules allow for
affordable and flexible planning capabilities. The
proposed DALI MAS architecture exploits such
modules for flexible goal decomposition and plan-
ning, with the possibility to select plans accord-
ing to a suite of possible preferences and to re-
plan upon need. We present a case-study concern-
ing DALI agents which cooperate for exploring an
unknown territory under changing circumstances
in an optimal or at least sub-optimal fashion. The
architecture can be exploited not only by DALI
agents, but rather by any kind of logical agent.

Introduction and Motivation
Scenarios characterized by inter-dependency between action
and context are [17] for instance the ones related to the res-
cue intervention in a territory upon occurrence of some kind
of catastrophic event. Cities with damaged / nonfunctional
roads, people moving to safe places, people in need that can-
not move, busy telecommunication channels, chaotic car traf-
fic, etc. In such cases, data and knowledge about the territory
is often outdated in a few seconds.

What is required there includes:
• repeatedly monitor and explore the environment by

means of an infrastructure including drones, sensors,
robots, and human operators equipped with some kind
of system terminals to regain up-to-date knowledge of
the environment;
• suggest dynamic plans of intervention obeying to phys-

ical, ethical and organizational constraints (e.g., a se-
quence of intervention according to priorities);

Figure 1: Top row: Earthquake : L’Aquila, Italy, 2009;
bottom left Flooding : USA, 2010;
bottom right Fire : Chile, 2012.

• guide rescuers in the exploration of the territory.
Action and context are in such scenarios intertwined and

mutually dependent, with actions determined by a context in
turn dynamically modified by the actions (e.g., by removal of
debris), as well as by external events (like aftershocks in case
of an earthquake).

In this paper we propose an approach which seamlessly
integrates activity plans and dynamic knowledge acquisition
on the environment within the framework of a logic-based
multiagent-oriented system. In particular, we concentrate as
a case-study on the exploration of the environment: in fact,
after catastrophic events previous knowledge about the envi-
ronment may be no longer valid, and hence the environment
must be considered as (at least partially) unknown. Thus, ex-
ploration and dynamic acquisition of up-to-date data is a pre-
requisite for organizing rescue.

Adaptive autonomous agents [26; 5] are capable of adapt-
ing to partially unknown and potentially changing environ-
ments. This requires agents to be capable of various forms
of commonsense reasoning and planning. Since [11], we ad-
vocated agent architectures capable of smooth integration
of several modules/components representing different behav-
iors/forms of reasoning, possibly based upon different for-
malism. Therefore, the overall agent’s behavior can be seen
as the result of dynamic combination of these behaviors, also



in consequence of the evolution of the agent’s environment.
We proposed in particular to adopt Answer Set Program-

ming (ASP) modules, where ASP (cf., among many, [7; 3;
33; 38] and the references therein) is a successful logic pro-
gramming paradigm which is nowadays a state-of-the-art tool
for planning and reasoning with affordable complexity, for
which many efficient implementations are freely available
[39]. We in fact augmented the DALI agent-oriented lan-
guage, invented and developed in our research group [25; 13;
12; 25], with a plugin for the invocation of answer set solvers.
ASP modules can be exploited in agents in a variety of ways,
for instance (but not only) for (limited forms of) reasoning
about possibility and necessity. We have recently enhanced
the integration by adopting ASP modules for planning pur-
poses, allowing an agent or a MAS to choose among the var-
ious plans that can be obtained by means of suitable prefer-
ences. Lately, we also introduced a ProbLog [8] in DALI, to
compute answers with associated probabilities: in this way,
an agent is able to choose the course of action also according
to probabilistic considerations.

In this paper, we show an architecture (that we have de-
signed and developed for DALI, but that can be easily adapted
to other agent-oriented frameworks) to cope with complex
goals, i.e., goals that can take profit from the subdivision into
sub-goal because one of the following (or both) is the case:

• the instance size of the planning problem to be solved
for reaching the goal is too big for efficient and timely
solution, so the instance must be partitioned (if possible)
and the sub-solutions must then be combined/merged to-
gether;
• the goal naturally splits into sub-goals where plans can/-

must be devised separately, and then combined/merged
together.

The architecture exploits not a single DALI agent but a
MAS (Multi-Agent System), with suitable components for
planning and executing plans, but also for partitioning goals
and controlling the generation/exploitation of solutions, and
possible (even partial) re-planning in case of environmental
changes.

The effectiveness of this solution is demonstrated by means
of a case-study where DALI agents cooperate in order to ex-
plore an unknown territory upon occurrence of some kind of
catastrophic event (earthquake, fire, flooding, terrorist attack,
ect.).

We propose a solution based upon a MAS instead of a
monolithic software solution because we consider important
that each software component, that we implement as an agent,
should partially retain its autonomy during asynchronous
event processing. In fact, in this way each agent can be en-
riched with high-level reasoning/control behaviors that can
coexists with the planning/executing activity. The MAS so-
lution also permits to distribute the computational effort and
increases overall robustness by means of advanced features
such as self-monitoring and self-diagnostic, as shown in [4].
As discussed below, the MAS can be based upon a controller
agent which partitions a planning problem and, according to
certain features (e.g., related to plan selection), assigns tasks
of planning, re-planning and plan execution. ASP modules

are meant to be exploited for planning purposes. Qualitative
aspects of the proposed solution consist in: (1) the general
MAS structure, that can be customized in order to cope with
real-world problems rather than toy instances; (2) the interac-
tion between the MAS and the ASP module(s); (3) the adop-
tion of preferences for choosing among possible plans.

The paper is structured as follows. In the first two sections
we recall ASP and the DALI language and framework. We
then present the proposed architecture, and the case study.
Finally we discuss the proposal and conclude.

Answer Set Programming in a Nutshell

“Answer set programming” (ASP) is a well-established logic
programming paradigm adopting logic programs with de-
fault negation under the answer set semantics, which [27;
28] is a view of logic programs as sets of inference rules
(more precisely, default inference rules). In fact, one can see
an answer set program as a set of constraints on the solution of
a problem, where each answer set represents a solution com-
patible with the constraints expressed by the program. For
the theory and the applications of ASP, the reader can refer
for instance to [7; 3; 33; 38]. Planning is among the more
suitable an successful applications of ASP: c.f., e.g., [37;
35] and the references therein, treating planning in ASP even
under incomplete information. Several well-developed an-
swer set solvers [39; 7] that compute the answer sets of a
given program can be freely downloaded by potential users.
The functioning and features of such solvers is illustrated in
articles appearing in [7].

Syntactically, a program (or, for short, just “program”)
Π is a collection of rules of the form H ←
L1, . . . , Lm, not Lm+1, . . . , not Lm+n

where H is an atom, m > 0 and n > 0, and each Li is
an atom. Symbol ← is usually indicated with :- in practical
systems. An atom Li and its negative counterpart notLi are
called literals. The left-hand side and the right-hand side of
the clause are called head and body, respectively. A rule with
empty body is called a fact. A rule with empty head is a con-
straint, where a constraint of the form ← L1, ..., Ln. states
that literals L1, . . . , Ln cannot be simultaneously true in any
answer set.

Unlike other paradigms, a program may have several an-
swer sets, each of which represent a solution to given prob-
lem which is consistent w.r.t. the given problem description
and constraints, or may have no answer set, which means that
no such solution can be found. Whenever a program has no
answer sets, it is said to be say that the program is inconsis-
tent (w.r.t. consistent). In the case of planning, each answer
set (if any exists) represents a plan.

All solvers provide a number of additional features useful
for practical programming, that we will introduce only when-
ever needed. Solvers are periodically checked and compared
over well-established benchmarks, and over challenging sam-
ple applications proposed at the yearly ASP competition (cf.
[9] for a recent report).

2



The DALI language: Framework and
Applications
DALI [13] (cf. [12] for a comprehensive list of references)
is an Agent-Oriented Logic Programming language. DALI
agent is triggered by several kinds of events: external events,
internal, present and past events.

External events are syntactically indicated by the postfix
E. Reaction to each such event is defined by a reactive rule,
where the special token :>. The agent remembers to have re-
acted by converting an external event into a past event (postfix
P). An event perceived but not yet reacted to is called “present
event” and is indicated by the postfix N.

In DALI, actions (indicated with postfix A) may have or
may not have preconditions: in the former case, the actions
are defined by actions rules, in the latter case they are just
action atoms. An action rule is characterized by the new token
:<. Similarly to events, actions are recorded as past actions.

Internal events is what make a DALI agent proactive. An
internal event is syntactically indicated by the postfix I, and
its description is composed of two rules. The first one con-
tains the conditions (knowledge, past events, procedures, etc.)
that must be true so that the reaction (in the second rule) may
happen. Thus, a DALI agent is able to react to its own con-
clusions. Internal events are automatically attempted with a
default frequency customizable by means of directives in the
initialization file, where the frequency will depend upon the
very nature of each such event, and the degree of ctiticality
for the agent.

The DALI communication architecture implements the
DALI/FIPA protocol, which consists of the main FIPA prim-
itives, plus few new primitives which are particular to DALI.
The architecture also includes a filter on communication
based on ontologies and forms of commonsense reasoning.

The DALI programming environment at current stage
of development [25] offers a multi-platform folder en-
vironment, built upon Sicstus Prolog programs, shells
scripts, Python scripts to integrate external applications, a
JSON/HTML5/jQuery web interface to integrate into DALI
applications, with a Python/Twisted/Flask web server capable
to interact with A DALI MAS at the back-end. We have re-
cently devised a cloud DALI implementation, reported in [16;
18]. In fact, as we have since long been convinced of the
potential usefulness of the DALI logical agent-oriented pro-
gramming language in the cognitive robotic domain, in the
above-mentioned papers we have presented the extensions
to the basic pre-existing DALI implementation which add a
number of useful new features, and in particular allow a DALI
MAS to interact with robots. As shown in [16], the DALI
framework has been extended to “DALI 2.0” by using open
sources packages, protocols and web based technologies.
DALI agents can thus be developed to act as high level cog-
nitive robotic controllers, and can be automatically integrated
with conventional embedded controllers. The web compati-
bility of the framework allows real-time monitors and graph-
ical visualizers of the underline MAS activity to be specified,
for checking the interaction between an agent and the related
robotic subsystem. The cloud package ServerDALI allows a
DALI MAS to be integrated into any practical environment.

In [18] paper we have illustrated the new “Koiné DALI”
framework, where a Koiné DALI MAS can cooperate without
problems with other MASs, programmed in other languages,
and with object-oriented applications. In summary, the en-
hanced DALI can be used for multi-MAS applications and
hybrid multi-agents and object-oriented applications, and can
be easily integrated into preexisting applications.

The DALI framework has been experimented, e.g., in ap-
plications for user monitoring and training, in emergencies
management (like first aid triage assignment), in security or
automation contexts, like home automation or processes con-
trol, and, more generally, in every situation that is character-
ized by events (either simple events and/or events that are cor-
related to other ones even in complex patterns). An architec-
ture encompassing DALI agents and called, F&K (Friendly-
and-Kind) system [1] has been proposed for (though not
restricted to) applications the e-Health domain. F&Ks are
“knowledge-intensive” systems, providing flexible access to
dynamic, heterogeneous, and distributed sources of knowl-
edge and reasoning, within a highly dynamic computational
environment consisting of computational entities, devices,
sensors, and services available in the Internet and in the cloud.
As a suitable general denomination for systems such as F&Ks
we propose “Dynamic Proactive Expert Systems” (DyPES):
in fact, such systems are aimed at supporting human ex-
perts and personnel or human users in a knowledgeable fash-
ion, so they are reminiscent of the role of traditional expert
systems. However, they are proactive in the sense that such
systems have objectives (e.g., monitoring patients, manag-
ing resources, exploring territories, etc.) that they pursue au-
tonomously, requiring human intervention only when needed.
They are also dynamic, because they are able to exploit not
only a predefined knowledge base: rather, they are equipped
with a number of reasoning modules, and they are able to lo-
cate other such modules, and the necessary knowledge and
reasoning auxiliary resources. In fact, DyPESs are character-
ized by “Knowledge-intensity”, in the sense that in general a
large amount of heterogeneous information and data must be
retrieved, shared and integrated in order to reason within the
system’s domain. DyPESs can be Cyber-Physical Systems in-
tegrating software and physical components [31], and can be
able to perform Complex Event Processing, i.e., to actively
monitor event data so as to make automated decisions and
take time-critical actions (DALI has been in fact empowered
with CEP capabilities [14]).

Agents (and in particular robotic agents) have complex
goals that may need to be decomposed, either hierarchically
or anyway into related sub-goals; moreover, such goals may
change in time depending upon the interaction with the en-
vironment. Prolog-based logical agents such as DALI agents
but also agents written in other agent-oriented computational-
logic-based languages (e.g., AgentSpeak [34; 6], GOAL [30;
29], 3APL [23; 24]) can devise and execute plans. However,
they are not easily able to decompose goals into sub-goals,
evaluate (based upon preferences) alternative plans, and re-
plan if needed, possibly for some sub-goals only; implement-
ing such features within a single agent would in fact make the
agent code heavy to understand and execute.

We have since long equipped DALI with a plugin for in-

3



voking ASP solvers and thus executing ASP modules. If such
a module is used for planning, the possibility has been re-
cently introduced to choose among the generated plans based
upon preferences; the preference strategies implemented so
far are: (i) shortest plan; (ii) minimal-cost plan; (iii) plan in-
cluding a minimum/maximum number of a certain kind of
actions; we intend to implement plan evaluation based upon
preferences on resource consumption, following the princi-
ples of [20; 19; 21].

Below we propose a DALI MAS architecture aimed at
goal decomposition, sub-goal assignment, planning and re-
planning concerning complex goals.

The MAS Architecture
In this section we illustrate the features of the proposed ar-
chitecture. The DALI MAS is intended to fulfill the so-called
bounded rationality principle, by which a plan for reaching a
goal has to be devised and executed in a timely manner be-
fore a ultimate Tmax deadline. Consequently, there is a sec-
ond deadline TPlanMax < TMax by which a plan has to be
computed and selected, so that the remaining time is sufficient
for plan execution.

Thus, given the input set TPlanMax, TMax, G,N , where G
is the goal, N is the instance size of the problem to be solved
(if applicable), the MAS operates via the following steps.

(i) Decompose the overall goal into suitable sub-goals;

(ii) For each sub-goal, generate a plan within the TPlanMax

deadline;

(iii) Execute the plan within the TMax deadline; in case of
failure (insufficient time), maximize the length of the
partially executed plan;

(iv) In case of a change of conditions in the environment, re-
plan, possibly limiting this activity to specific sub-goals
resulting from the partitioning.

Sub-goals can be determined by any kind of goal partition-
ing algorithm. In the disaster management case study, here
discussed, it is obtained simply by sub-dividing the main ge-
ographical area are into slightly overlapping sub-territories.
Other algorithms can be adopted to generate sub-plans, such
as [36], [2] and [22]. The planner agent with the ASP mod-
ule may find more than one plan for each (sub-)goal; so it is
useful (as said before) to apply metrics by which a plan could
be preferred to another one. The proposed DALI MAS archi-
tecture is shown in Figure 1 and the agent behaviors are the
following.

• COORDINATOR agent: this agent synchronizes all the
actions of the MAS and updates the global state of goal
solving. Its task are the following.

(a) Ensure the proper activation of the MAS.
(b) Interact with the external world and whenever

needed set new objectives for the MAS or revise
the present goals.

(c) Initialize the TPlanMax and TMax deadlines, de-
pending upon the goal.

(d) Decompose the goal into subgoals.

Figure 2: DALI MAS architecture: Coordinator, Meta-
Planner, Planner, Explorer agents. The MAS can be deployed
over a cloud computing architecture, thus distributing and
balancing the required computational resources. The ASP
module is executed via an external solver, configurable de-
pending on the required capabilities. The EXPLORER agent
is supposed to execute a plan, possibly working “in the field”,
i.e., embedded in a mobile robot or some other facility.

(e) For each subgoal, activate a copy of the META-
PLANNER agent, possibly providing as input the
preference criterion for plan selection.

(f) receive from the META-PLANNER agent the plan
to be executed up to TPlanMax and deliver the
plan to the EXPLORER agent, which is in charge
of plan execution within maximum time TMax -
TPlanMax.

(h) If time elapses, or new events occur, cancel the cur-
rent running plan and if applicable send a replan
indication to the META-PLANNER.

(h) Logs all events to a log server.
• META-PLANNER agent, whose tasks are the follow-

ing. (a) (b) It also exploits the given preference criterium
in order to select the plan which is closer to present pref-
erences whenever the PLANNER returns more than one
answer.
(a) Receive the triggering event from the COORDI-

NATOR to start the search for a new plan.
(b) Generate input for the PLANNER agent while

monitoring its performances. If PLANNER agent
does not deliver before TPlanMax, cancel the plan
request and ask PLANNER to generate a trivial
plan.

(c) Apply plan selection accorded to preferences, ei-
ther local or set by COORDINATOR agent.

(c) If requested by COORDINATOR4ent, ask
PLANNER for re-planning with updated input.

• PLANNER agent, which receives as input the time
constraints TPlanMax, TMax and spatial constraints

4



C%, N, F (ex: coverage, number of reach/do not reach
cells) from META-PLANNER and generates possi-
ble plan via an ASP module, if possible within the
TPlanMax deadline. If more than a single answer is pro-
duced by the ASP solver, it returns all available plans to
the META-PLANNER. If no solution exists, it gener-
ates a trivial plan (if possible), i.e. a simple greedy algo-
rithm without global optimization.

• EXPLORER: puts into action the plan provided by the
COORDINATOR, if possible within the TMax dead-
line, and notifies the COORDINATOR upon comple-
tion. The explorer is in charge of plan execution and is
so-called as a reminiscence of the case study presented
below; in general however, the name is justified because
this agent can execute plans (also) by means of physi-
cal components in a Cyber-Physical System, and/or by
means of robotic elements of various kinds. In Figure 1,
EXPLORER is designated as “field controller” as plan
execution is situated into some environment.

Case Study
The architecture presented above has been inspired and mo-
tivated by a case-study that has been actually implemented
and experimented, and presented in [15]. The overall goal in
the case study is to explore an unknown territory upon oc-
currence of some kind of catastrophic event (earthquake, fire,
flooding, terrorist attack, ect.). For simplicity, we have mod-
eled the territory (also called “area”) as a set of a N ∗N parts
represented as chessboards, i.e., squares of cells, where some
cells are marked as unreachable/forbidden, and are therefore
considered as “holes” in the chessboard. This represents the
fact that the agents may be notified by an external authority or
by other sources of the actual impossibility of traversing that
location because of some kind of obstruction/danger. The for-
bidden/unreachable locations can change in time.

For the sake of experiments, the robot that each agent em-
ploys for exploration has been represented (in the case study)
as a chess’ knight piece, which performs knight leaps. This is
to signify that a real robot (whatever its kind) will in practice
have limited possibilities of movement. In this way, the prob-
lem of exploration of a single piece of territory can be mod-
eled as a variant of the well-known “knight tour with holes”
problem, for which well-known ASP solutions exist. The ul-
timate objective would be that of devising an Hamiltonian
path, thus fully exploring the given piece of territory while
skipping the forbidden squares. As however the Hamiltonian
path option results too heavy with reasonable instance size
(actually, it is too heavy for size more than 8), we resorted to
sub-optimal solutions which adopt soft constraints in order to
visit each square as few times as possible.

The Knight Tour with holes problem has constituted a
benchmark in recent ASP competitions, aimed at comparing
ASP solvers performances. We performed a number of mod-
ifications to the original version [10] concerning: the repre-
sentation of holes; the objective of devising a path which,
though not Hamiltonian, guarantees a required degree of cov-
erage with the minimum number of multiple-traversals; sim-
ple forms of loop-checking for avoiding at least trivial loops.

For the sake of completeness, below is the sketch of our so-
lution, formulated for the DLV ASP solver [32], though it
might be easily reformulated for other solvers. The key mod-
ifications to the base solution are the following.

• We modified the reached constraint, and transformed it
into a “soft” (or weak) constraint, satisfied if possible,
denoted by connective :∼, so as not to be forced to find-
ing a Hamiltonian path.

reached(X,Y) :- move(1,1,X,Y).
reached(X,Y) :- reached(X1,Y1),

move(X1,Y1,X,Y).
:∼ cell(X,Y),

not forbidden(X,Y),
not reached(X,Y).

• We added a coverage-satisfaction rule, where
coverage denotes the required degree of coverage
and number forbidden the number of holes, and V
is the instance size, i.e., the chessboard edge. The
maximum possible coverage is 100% of the available
cells, i.e., M = V ∗ V , while the minimum coverage
N is computed in terms of coverage, considering the
holes. Suitable application of the count DLV constraint
[32] guarantees the desired coverage.

coverage(95). % sample coverage degree,
% can be changed

number_forbidden(5).
cov(N) :-

N <= #count{X,Y : reached(X,Y)} <= M,
size(V), coverage(Z),
number_forbidden(F),
M = V * V, N2 = M * Z,
N3 = N2 /100, N = N3 - F.

Experimental results have demonstrated the usefulness of
the proposed MAS architecture, that is actually able to effec-
tively cope with real-world instance sizes. The architecture in
this case study works as follows.

• The COORDINATOR agent partitions the territory that
must be explored into a number of (possibly overlap-
ping) sections (chessboards) of reasonable size, each one
to be assigned to a META-PLANNER instance.

• Each plan to be executed (exploration to be performed)
is assigned to a separate EXPLORER agent, specifically
assigned to that territory section. Each instance of the
META-PLANNER agent relies upon its own associated
copy of the planner agent.

• different preference policies can possibly be associated
with different sections of the territory to be explored, ac-
cording to directions provided by the user/environment.

• The COORDINATOR will devise re-planning for each
portion of the territory for which the unreachable loca-
tion have changed.

Reasonable metrics measure plans returned by the ASP
module in terms of: (i) number of cells that have to be visited
when using coverage, (ii) length of the path, (iii) presence
of loops (when the Hamiltonian constraint is released); (iv)
plan cost, in case there is a specific cost associated to each

5



cell. Preference criteria can then be defined by selecting one
metric, or by combining different metrics: for instance, a cri-
terium may consist in preferring the shortest path, if it does
not exceed a certain cost.

Concluding Remarks
We have proposed a MAS architecture for flexible goal de-
composition, plan formation and execution 1. In real applica-
tion, a MAS for each (class of) goal(s) would be designed,
implemented and located into the DALI cloud. In fact, all
components of the MAS will be programmed according to
the goal to be reached, i.e., to the problem to be solved. Each
agent that needs to solve a goal refers to the suitable MAS.
As mentioned, the DALI framework allows uniform access
also to agents written in other languages/formalism. So, the
proposed solution is not DALI-specific but rather can be gen-
erally adopted.

Acknowledgement
This research has been carried out thanks to internal funding
from our department at University of L’Aquila. We thanks
reviewers for helping us to improve the quality of this work.

References
[1] Federica Aielli, Davide Ancona, Pasquale Caian-

iello, Stefania Costantini, Giovanni De Gasperis, An-
tinisca Di Marco, Angelo Ferrando, and Viviana Mas-
cardi. FRIENDLY & KIND with your health: Human-
friendly knowledge-intensive dynamic systems for the
e-health domain. In Highlights of Practical Applica-
tions of Scalable Multi-Agent Systems. The PAAMS Col-
lection - International Workshops of PAAMS 2016, Pro-
ceedings, volume 616 of Communications in Computer
and Information Science, pages 15–26. Springer, 2016.

[2] Ron Alford, Vikas Shivashankar, Mark Roberts, Jeremy
Frank, and David W Aha. Hierarchical planning: Relat-
ing task and goal decomposition with task sharing. In
IJCAI, pages 3022–3029, 2016.

[3] Chitta Baral. Knowledge representation, reasoning and
declarative problem solving. Cambridge University
Press, 2003.

[4] V. Bevar, H. Muccini, S. Costantini, G. De Gasperis, and
A. Tocchio. A multi-agent system for industrial fault
detection and repair. In Advances on Practical Applica-
tions of Agents and Multi-Agent Systems., Advances in
Intelligent and Soft Computing, pages 47–55. Springer,
Berlin Heidelberg, 2012. Paper and demo.

[5] Rafael H. Bordini, Lars Braubach, Mehdi Dastani,
Amal El Fallah-Seghrouchni, Jorge J. Gómez-Sanz,
João Leite, Gregory M. P. O’Hare, Alexander Pokahr,

1A previous version of this paper has been presented at SIRLE
2018, AAAI 2018 Spring Symposium on Integrating Representa-
tion, Reasoning, Learning, and Execution for Goal Directed Au-
tonomy, held at Stanford University, Palo Alto, CA, United States,
March 26-28, 2018.

and Alessandro Ricci. A survey of programming lan-
guages and platforms for multi-agent systems. Infor-
matica (Slovenia), 30(1):33–44, 2006.

[6] Rafael H. Bordini and Jomi Fred Hübner. Semantics for
the jason variant of agentspeak (plan failure and some
internal actions). In Helder Coelho, Rudi Studer, and
Michael Wooldridge, editors, ECAI 2010 - 19th Euro-
pean Conference on Artificial Intelligence, Proceedings,
volume 215 of Frontiers in Artificial Intelligence and
Applications, pages 635–640. IOS Press, 2010.

[7] Gerhard Brewka, Thomas Eiter, and
Miroslaw Truszczynski (eds.). Answer set pro-
gramming: Special issue. AI Magazine, 37(3), 2016.

[8] Maurice Bruynooghe, Theofrastos Mantadelis, Ange-
lika Kimmig, Bernd Gutmann, Joost Vennekens, Gerda
Janssens, and Luc De Raedt. Problog technology for
inference in a probabilistic first order logic. In ECAI
2010 - 19th European Conference on Artificial Intelli-
gence, Lisbon, Portugal, August 16-20, 2010, Proceed-
ings, pages 719–724, 2010.

[9] Francesco Calimeri, Giovambattista Ianni, Thomas
Krennwallner, and Francesco Ricca. The answer set
programming competition. AI Magazine, 33(4):114–
118, 2012.

[10] Francesco Calimeri and Neng-Fa Zhou. Knight
tour with holes ASP encoding, 2014. See http:
//www.mat.unical.it/aspcomp2013/files/
links/benchmarks/encodings/aspcore-2/
22-Knight-Tour-with-holes/encoding.asp.

[11] S. Costantini. Answer set modules for logical agents.
In Oege de Moor, Georg Gottlob, Tim Furche, and An-
drew Sellers, editors, Datalog Reloaded: First Interna-
tional Workshop, Datalog 2010, volume 6702 of LNCS.
Springer, 2011. Revised selected papers.

[12] S. Costantini. The DALI agent-oriented logic program-
ming language: Summary and references 2015, 2015.

[13] S. Costantini and A. Tocchio. The DALI logic program-
ming agent-oriented language. In Logics in Artificial
Intelligence, Proceedings of the 9th European Confer-
ence, Jelia 2004, LNAI 3229. Springer-Verlag, Berlin,
2004.

[14] Stefania Costantini. Ace: a flexible environment for
complex event processing in logical agents. In Lu-
ciano Baresi Matteo Baldoni and Mehdi Dastani, edi-
tors, Engineering Multi-Agent Systems, Third Interna-
tional Workshop, EMAS 2015, Revised Selected Papers,
volume 9318 of Lecture Notes in Computer Science.
Springer, 2015.

[15] Stefania Costantini, Giovanni De Gasperis, and Giulio
Nazzicone. Exploration of unknown territory via
DALI agents and ASP modules. In Sigeru Omatu,
Qutaibah M. Malluhi, Sara Rodrı́guez-González,
Grzegorz Bocewicz, Edgardo Bucciarelli, Gianfranco
Giulioni, and Farkhund Iqba, editors, Distributed Com-
puting and Artificial Intelligence, 12th International

6



Conference, DCAI 2015, Salamanca, Spain, June 3-5,
2015, volume 373 of Advances in Intelligent Systems
and Computing, pages 285–292. Springer, 2015.

[16] Stefania Costantini, Giovanni De Gasperis, and Giulio
Nazzicone. DALI for cognitive robotics: Principles and
prototype implementation. In Yuliya Lierler and Walid
Taha, editors, Practical Aspects of Declarative Lan-
guages - 19th International Symposium, Proceedings,
volume 10137 of Lecture Notes in Computer Science,
pages 152–162. Springer, 2017.

[17] Stefania Costantini, Giovanni De Gasperis, Giulio
Nazzicone, and Laura Tarantino. Context and action:
A unitary vision within a logic-based multi-agent en-
vironment. Lecture Notes in Information Systems and
Organisation, 18:97–111, 2016.

[18] Stefania Costantini, Giovanni De Gasperis, Valentina
Pitoni, and Agnese Salutari. Dali: A multi agent sys-
tem framework for the web, cognitive robotic and com-
plex event processing. In Proceedings of the 32nd
Italian Conference on Computational Logic, volume
1949 of CEUR Workshop Proceedings, pages 286–
300. CEUR-WS.org, 2017. http://ceur-ws.org/Vol-
1949/CILCpaper05.pdf.

[19] Stefania Costantini and Andrea Formisano. Model-
ing preferences and conditional preferences on resource
consumption and production in ASP. Journal of of Al-
gorithms in Cognition, Informatics and Logic, 64(1),
2009.

[20] Stefania Costantini and Andrea Formisano. Answer
set programming with resources. Journal of Logic and
Computation, 20(2):533–571, 2010.

[21] Stefania Costantini, Andrea Formisano, and Davide Pet-
turiti. Extending and implementing RASP. Fundam.
Inform., 105(1-2):1–33, 2010.

[22] Michael T Cox, Dustin Dannenhauer, and Sravya Kon-
drakunta. Goal operations for cognitive systems. In
AAAI, pages 4385–4391, 2017.

[23] Mehdi Dastani, Birna van Riemsdijk, Frank Dignum,
and John-Jules Ch. Meyer. A programming language for
cognitive agents goal directed 3apl. In Mehdi Dastani,
Jürgen Dix, and Amal El Fallah-Seghrouchni, editors,
Programming Multi-Agent Systems, First International
Workshop, PROMAS 2003, Selected Revised and Invited
Papers, volume 3067 of Lecture Notes in Computer Sci-
ence, pages 111–130. Springer, 2004.

[24] Mehdi Dastani, M. Birna van Riemsdijk, and John-
Jules Ch. Meyer. Programming multi-agent systems
in 3APL. In Rafael H. Bordini, editor, Multi-Agent
Programming: Languages, Platforms and Applications,
volume 15 of Multiagent Systems, Artificial Societies,
and Simulated Organizations, pages 39–67. Springer,
2005.

[25] Giovanni De Gasperis, Stefania Costantini, and Giulio
Nazzicone. Dali multi agent systems framework,
doi 10.5281/zenodo.11042. DALI GitHub Software

Repository, July 2014. DALI: http://github.com/
AAAI-DISIM-UnivAQ/DALI.

[26] Michael Fisher, Rafael H. Bordini, Benjamin Hirsch,
and Paolo Torroni. Computational logics and agents:
a road map of current technologies and future
trends. Computational Intelligence Journal, 23(1):61–
91, 2007.

[27] Michael Gelfond and Vladimir Lifschitz. The stable
model semantics for logic programming. In Robert
Kowalski and Kenneth Bowen, editors, Proceedings of
the 5th International Conference and Symposium on
Logic Programming (ICLP/SLP’88), pages 1070–1080.
The MIT Press, 1988.

[28] Michael Gelfond and Vladimir Lifschitz. Classical
negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

[29] Koen Hindriks. A verification logic for goal agents.
In Mehdi M. Dastani, Koen Hindriks, and John-
Jules Charles Meyer, editors, Specification and Verifi-
cation of Multi-agent Systems. Springer, 2010.

[30] Koen V. Hindriks. Programming rational agents in goal.
In Multi-Agent Programming, pages 119–157. Springer
US, 2009.

[31] Siddhartha Kumar Khaitan and James D. McCalley. De-
sign techniques and applications of cyberphysical sys-
tems: A survey. IEEE Systems Journal, 9(2):350–365,
2015.

[32] N Leone, G Pfeifer, W Faber, T Eiter, G Gottlob, S Perri,
and F Scarcello. The dlv system for knowledge repre-
sentation and reasoning. ACM Transactions on Compu-
tational Logic, 7(3):499–562, 2006.

[33] Nicola Leone. Logic programming and nonmonotonic
reasoning: From theory to systems and applications. In
Chitta Baral, Gerhard Brewka, and John Schlipf, edi-
tors, Logic Programming and Nonmonotonic Reason-
ing, 9th International Conference, LPNMR 2007, 2007.

[34] A. S. Rao and M. Georgeff. Modeling rational agents
within a BDI-architecture. In Proceedings of the Sec-
ond Int. Conf. on Principles of Knowledge Representa-
tion and Reasoning (KR’91), pages 473–484. Morgan
Kaufmann, 1991.

[35] Javier Romero, Torsten Schaub, and Tran Cao Son.
Generalized answer set planning with incomplete in-
formation. In Bart Bogaerts and Amelia Harrison, ed-
itors, Proceedings of the 10th Workshop on Answer
Set Programming and Other Computing Paradigms
co-located with the 14th International Conference on
Logic Programming and Nonmonotonic Reasoning, AS-
POCP@LPNMR 2017, volume 1868 of CEUR Work-
shop Proceedings. CEUR-WS.org, 2017.

[36] Vikas Shivashankar, Ronald Alford, Ugur Kuter, and
Dana S Nau. The godel planning system: A more perfect
union of domain-independent and hierarchical planning.
In IJCAI, pages 2380–2386, 2013.

7



[37] Tran Cao Son. Answer set programming and its applica-
tions in planning and multi-agent systems. In Marcello
Balduccini and Tomi Janhunen, editors, Logic Program-
ming and Nonmonotonic Reasoning - 14th International
Conference, LPNMR 2017, Proceedings, volume 10377
of Lecture Notes in Computer Science, pages 23–35.
Springer, 2017.

[38] Miroslaw Truszczyński. Logic programming for knowl-
edge representation. In Verónica Dahl and Ilkka
Niemelä, editors, Logic Programming, 23rd Interna-
tional Conference, ICLP 2007, pages 76–88, 2007.

[39] Web-references. Some ASP solvers.
Clasp: potassco.sourceforge.net; Cmod-
els: www.cs.utexas.edu/users/tag/cmodels;
DLV: www.dbai.tuwien.ac.at/proj/dlv; Smod-
els: www.tcs.hut.fi/Software/smodels.

8




