
Counterplanning in Real-Time Strategy Games through Goal Recognition

Alberto Pozanco, Alejandro Blanco, Yolanda E-Martı́n, Susana Fernández, Daniel Borrajo
Departamento de Informática, Universidad Carlos III de Madrid

Avda. de la Universidad, 30. 28911 Leganés (Madrid). Spain

apozanco,alblanco@pa.uc3m.es, yescuder,sfarregu@inf.uc3m.es, dborrajo@ia.uc3m.es

Abstract
Real-Time Strategy (RTS) games have
been widely used in AI research due to
the many challenging subproblems they
pose, such as goal reasoning, strategy
construction, learning, etc. One of the
main challenges in AI applied to RTS
games is to autonomously synthesize
plans that counter opponent’s strategies
given their observations. This task can
be seen as a counterplanning problem. In
this paper, we introduce an automated ap-
proach to counterplan opponents strate-
gies in RTS. It combines; goal recogni-
tion to infer an opponent’s goal; land-
marks’ computation to identify subgoals
that can be used to block opponent’s
goals achievement; and classical auto-
mated planning to generate plans that
prevent the opponent’s goals achieve-
ment. Experimental results in StarCraft
mini-games show the benefits of our
novel approach.

Introduction
Games have always been interesting and great test beds for
developing and trying new AI capabilities because of their
well-defined set of rules, clear aims, and the possibility of
evaluating results in an objective way. RTS games are a par-
ticularly difficult type of games with many analogies to real
world problems. They differ from traditional board games in
several aspects: they could be partially observable; their state
space is usually enormous; all players make their moves si-
multaneously, which means that they have a small amount of
time to decide the next action. These features present many
challenging subproblems for AI research, such as decision
making under uncertainty, collaboration, opponent modeling,
or adversarial real-time planning [Buro, 2003].

Existing work on RTS games from an AI perspective can
be classified according to several criteria, such as the prob-
lems it addresses, the AI techniques involved, or the level of
abstraction employed. These levels of abstraction are usually
divided into reactive control (micro game), and tactics and

strategy (long-term or macro game). Focusing on the macro-
based RTS games, players often resort to strategies, that is,
sequences of actions that help them to achieve their goals.
These strategies can be selected from a predefined pool or
constructed from scratch.

Strategy selection is the most employed tech-
nique [Ontañón et al., 2013] when deciding which
strategy to follow. It is based on choosing a strategy
from a set of predefined policies given the current game
state. Multiple approaches for strategy selection exist,
ranging from game-theoretic approaches [Sailer et al., 2007;
Tavares et al., 2016], fuzzy rules [Preuss et al., 2013], or
case-based reasoning [Aha et al., 2005; Jaidee et al., 2011;
Wender and Watson, 2014]. A common drawback of these
approaches is that they must have access to a strategy set,
which must be previously given by a domain expert or
generated from games or simulations.

Recently, some works have explored strategy construction
in RTS games [Churchill et al., 2012; Uriarte and Ontañón,
2014; Stanescu et al., 2014]. To deal with its huge search
space, hierarchical and abstract game state representations are
used along game-tree search algorithms such as minimax or
Monte Carlo Tree Search to build the strategies. The draw-
back of these approaches is that they require heavy knowl-
edge engineering processes to generate the abstraction levels
and the goals involved in each of them. Moreover, these ap-
proaches do not take into account opponent’s intentions.

The strategies can be selected or generated given the cur-
rent game state. However, few works focus on predicting the
opponent’s movements or strategies to enhance agents’ rea-
soning process. Weber and Mateas (2009) proposed a data
mining approach to strategy prediction, Kabanza et al. (2010)
recognize opponent’s intentions using plan libraries, and
Stanescu and Čertickỳ (2016) employ answer set program-
ming to predict the units produced by the opponent. However,
none of the aforementioned works are capable of observing
the opponent and autonomously synthesize a good plan from
scratch to counter the opponent strategy. This lack of adapta-
tion has been identified as one of the major challenges in AI
applied to RTS games [Ontañón et al., 2013].

In this paper we focus on this challenge. Typically, a good
strategy to win can be to prevent opponents from achieving
their goals. This task has been previously named counterplan-
ning [Carbonell, 1981], and we recently automated that pro-

cess and made it domain-independent [Pozanco et al., 2018a].
This approach is based on: goal recognition, landmarks, and
classical automated planning. Goal recognition aims to infer
an agent’s plan or goals from a set of observed actions. We
use this technique to infer an opponent’s goals. Fact land-
marks are propositions that must be true in all valid solution
plans [Hoffmann et al., 2004]. We use landmarks to iden-
tify subgoals that can be used to block the opponent’s goal
achievement. Classical automated planning aims to gener-
ate a sequence of actions, namely a plan or strategy, which
achieves some goals from an initial state. In this paper we
apply this approach to RTS games. We use it to model the
RTS game (actions and goals) and to generate plans that pre-
vent the opponent’s goal achievement. This approach presents
some advantages over previous work: (1) it can detect op-
ponent’s intentions and strategies without resorting to plan
libraries; (2) it uses this information to enhance the agent
reasoning process, generating plans that counter opponents’
goals achievement; and (3), it can be used in any RTS game
and under any scenario, from micro (i.e., combat) to macro
(i.e., building strategies) game scenarios. With respect to our
previous counterplanning work, in this paper we modify the
algorithm to generate counterplans in shorter time. We ac-
complish it by: (1) using cost estimation in the goal recogni-
tion phase; and (2) selecting any spot where the opponent can
be blocked rather than reasoning about the best spot where to
block it. In addition, we apply it to a set of scenarios within a
RTS game.

The rest of the paper is organized as follows. In the next
section we review the basic notions of classical planning,
landmarks, and goal recognition. We next introduce our au-
tomated counter-planning process, followed by a description
of our goal recognition approach to quickly infer opponent’s
goals. Then we give details about modelling a RTS game as
planning. Finally we present an empirical study, discuss the
results, and outline future work.

Background

Automated Planning

Automated Planning is the task of choosing and organizing
a sequence of actions such that, when applied in a given ini-
tial state, it results in a goal state [Ghallab et al., 2004]. For-
mally, a single-agent STRIPS planning task can be defined as
a tuple Π = 〈F,A, I,G〉, where F is a set of propositions,
A is a set of instantiated actions, I ⊆ F is an initial state,
and G ⊆ F is a set of goals. Each action a ∈ A is de-
scribed by a set of preconditions (pre(a)), which represent
literals that must be true in a state to execute an action, and a
set of effects (eff(a)), which are the literals that are added
(add(a) effects) or removed (del(a) effects) from the state
after the action execution. The definition of each action in-
cludes a cost c(a) (the default cost is one). The execution of
an action a in a state s is defined by a function γ such that
γ(s, a) = (s \ del(a)) ∪ add(a) if pre(a)⊆ s, and s other-
wise (it cannot be applied). The output of a planning task is
a sequence of actions, called a plan, π = (a1, . . . , an). The
execution of a plan π in a state s can be defined as:

Γ(s, π) =

{
Γ(γ(s, a1), (a2, . . . , an)) if π 6= ∅
s if π = ∅

A plan π is valid if G ⊆ Γ(I, π). The plan cost is com-
monly defined as c(π) =

∑
ai∈π c(ai). We will use the func-

tion PLANNER(Π) to refer to an algorithm that computes a
plan π from a planning task Π.

Goal Recognition
Goal Recognition is the task of inferring another agent’s
goals through the observation of its interactions with
the environment. The problem has captured the atten-
tion of several computer science communities [Geib and
Goldman, 2009; Sukthankar et al., 2014]. Among them,
planning-based goal recognition approaches have been shown
to be a valid domain-independent alternative to infer
agents’ goals [Ramı́rez and Geffner, 2009; 2010; E-Martı́n
et al., 2015; Vered and Kaminka, 2017]. Ramı́rez and
Geffner (2010) developed an approach, which assumes that
observations are actions, and formally defined a planning-
based goal recognition problem as:

Definition 1 (Goal Recognition Problem) A goal recogni-
tion problem is a tuple T = 〈P,G, O, Pr〉 where P =
〈F,A, I〉 is a planning domain and initial conditions, G is
the set of possible goals G, G ⊆ F , O = (o1,, om) is an
observation sequence with each oi being an action in A, and
Pr is a prior probability distribution over the goals in G.

The solution to a goal recognition problem is a probability
distribution over the set of goals G ∈ G giving the relative
likelihood of each goal.

Landmarks
In Automated Planning, simple landmarks were initially de-
fined as sets of propositions that have to be true at some time
in every solution plan [Hoffmann et al., 2004]. Formally:

Definition 2 (Fact Landmark) Given a planning task Π =
〈F,A, I,G〉, a formula LΠ ⊂ F is a fact landmark of Π iff
LΠ is true in some state along all valid plans executions that
achieve G from I .

This definition was later extended to include action land-
marks [Richter and Westphal, 2010]. We will use the function
EXTRACTLANDMARKS(F,A, I,G) to refer to an algorithm
that computes a set of landmarks LΠ from a planning task Π.

Counterplanning Process
We first formalize the two actors involved in a counterplan-
ning problem as planning agents.

Definition 3 (Seeking agent) A seeking agent φ is an agent
that has an associated planning task Πφ = 〈Fφ, Aφ, Iφ, Gφ〉,
and pursues its goal Gφ by following a plan πφ computed
from Πφ.

Definition 4 (Preventing agent) A preventing agent α is
an agent that has an associated planning task Πα =
〈Fα, Aα, Iα, Gα〉.

Gα is initialized to ∅ and will be computed by Algorithm
1, which is described later. There can be varied relations be-
tween Πφ and Πα, and the information that one agent has
from the other. For instance, the actions that both agents can
perform could be the same Aφ = Aα, or totally different
Aφ ∩Aα = ∅. They could also have different or equal obser-
vations of the world. We assume that: (1) the preventing agent
knows the seeking agent’s model of the world; (2) determin-
istic action outcomes and full observability of those actions
by the preventing agent; (3) both agents stick to their plans,
i.e., they do not replan or change their goals; and (4) the tem-
poral duration of an action is determined by its cost. We use
unit costs in this paper.

Since both agents operate in a common environment, the
execution of their actions affects the shared environment.
Therefore, we assume that any state of the environment s can
be defined in terms of the set of propositions Fe (s ⊆ Fe),
such that Fφ ∪ Fα ⊆ Fe. That is, the state includes proposi-
tions in both Fφ and Fα. Those propositions in Fφ ∩ Fα will
be observable and modifiable by both agents. In addition, the
individual execution of actions by any of the two agents in
Fe will be based on the respective action sets. Hence, the ex-
ecution of an action a (a ∈ Aφ ∪ Aα) in a state s is defined
using the previous γ(s, a). Furthermore, the joint execution
of one action per agent in the same time step t can be defined
as follows.

Definition 5 (Joint execution of two actions) Given two
actions aφ ∈ Aφ and aα ∈ Aα and an environment state
s ⊆ Fe, the joint execution of both actions at a time step t
results in a new state given by

γφ,α(s, aφ, aα) =

{
γ(γ(s, aα), aφ) if aφ not mutex with aα
γ(s, aα) otherwise

Similarly, the joint execution of two plans Γφ,α(s, πφ, πα)
can be defined by the iteration of the joint execution of ac-
tions of those plans using γφ,α(s, aφ, aα). For simplicity, in
this paper we assume that when two actions are mutex the
preventing agent always executes its action first. Formally,
we define two mutex actions as follows.

Definition 6 (Mutex actions) Two actions ax,ay executed at
a time step t are mutex if any literal in eff(ax) deletes (adds)
any literal in pre(ay) or if any literal in eff(ax) deletes (adds)
a literal that is added (deleted) in eff(ay).

Using these definitions, we can now formally describe a
counterplanning task.

Definition 7 (Counterplanning task) A counterplanning
task is defined by a tuple CP = 〈Πφ,Πα,Gφ, Oφ〉 where
Πφ is the planning task of φ, Πα is the planning task
for the preventing agent, Gφ is the set of sets of goals
that φ can potentially pursue, and Oφ = (o1, . . . , om)
is a set of observations by α of the execution of a plan
πφ = (o1, . . . , om, am+1, . . . , ak) that solves Πφ.1

We assume that φ generates a plan πφ to solve its planning
task Πφ prior to counterplanning, and that such plan (as well

1We have changed the notation oi for aj in the πφ plan to differ-
entiate between observations and future actions.

as its corresponding goals) is unknown for α. Then, at some
time stepm of the execution of πφ (wherem can range from 1
to k, the length of πφ), given all observed actions from the ex-
ecution of πφ, α has to infer the φ agent goals (from Gφ) and
generate a solution to a counterplanning task, namely coun-
terplan.

Definition 8 (Counterplan) Given φ agent plan πφ =
(am+1, . . . , ak), a plan πα = (a1, . . . , an) is a valid coun-
terplan for πφ = (am+1, . . . , ak) if the joint execution of
πα and πφ does not allow φ to achieve the goals in Gφ;
Gφ 6⊆ Γφ,α(s, πφ, πα).

Our approach to solve counterplanning tasks assumes that
α can delete (or add in the case of negated literals) some
proposition that φ needs in order to achieve its goals. There
could be different definitions for needed literals. We use plan-
ning landmarks in this work. The seeking agent φ and the
preventing agent α share some propositions, Fφ ∩Fα 6= ∅; at
least one action a in α model, a ∈ Aα, must delete (add) at
least one of φ’s plan landmarks. These requirements are ful-
filled in RTS games, where agents typically share the same
environment and have the same actions available to them.

Algorithm 1 shows the high-level algorithm used to solve
a counterplanning task from the perspective of α. While no
counterplan has been found, the algorithm asks for the last
observed action, sending it to RECOGNIZEGOALS along with
a planning domain, initial conditions, and a set of candidate
goals Gφ. It returns Tφ, a set in the form of tuples 〈goal,
number〉 and the updated initial state Iφ after observing oφ.
Next, we select the most likely goals’ set G′φ from Tφ. For
each goal g ∈ G′φ, we extract the landmarks of the new φ
planning task using EXTRACTLANDMARKS. This computa-
tion will return the set of common landmarks LΠφ among
all the most probable goals G′φ. If there are no common
landmarks, the counterplanning task cannot be performed.
Otherwise, the algorithm selects the set of counterplanning
landmarks LΠφ,Πα in EXTRACTCPLANDMARKS. The coun-
terplanning landmarks are those landmarks that the prevent-
ing agent can delete (add) with its model of the world (do-
main). The counterplanning landmarks’ set is a subset of the
planning landmarks’ set. As before, if there are not counter-
planning landmarks, the counterplanning task cannot be per-
formed. Otherwise, we iterate over the set of counterplanning
landmarks LΠφ,Πα and generate a plan to achieve that land-
mark for both agents (negated in the case of the preventing
agent). If c(πα) + tr < c(πφ), it means that α can stop φ at
that point and the plan πα is returned. tr stands for the needed
reasoning time to generate the counterplan. Note that any of
the landmarks in LΠφ,Πα would be a valid goal for the pre-
venting agent to block the seeking agent from achieving its
goals. Although some reasoning processes could be applied
at this point [Pozanco et al., 2018a], we simply select one of
them to speed-up the counterplanning process.

Cost Estimation Gradient Goal Recognition
In our previous work [Pozanco et al., 2018a], we employed
Ramı́rez and Geffner goal recognition approach [2010] to
identify opponents’ goals. However, this approach is often
slow and therefore cannot be used to identify goals in RTS

Algorithm 1 COUNTERPLANNING

Inputs: Πφ,Πα,Gφ
Outputs: πα

1: πα ← ∅
2: while πα = ∅ do
3: oφ ←GETOBSERVATION()
4: Tφ, Iφ ← RECOGNIZEGOALS(Fφ, Aφ, Iφ,Gφ, oφ)
5: LΠφ ← Fφ
6: G′φ ← goal(arg mint∈Tφ n(t))
7: for g ∈ G′φ do
8: LΠφ ← LΠφ∩ EXTRACTLANDMARKS(Fφ, Aφ, Iφ, g)
9: if LΠφ 6= ∅ then

10: LΠφ,Πα ←EXTRACTCPLANDMARKS(Πφ,Πα,LΠφ)
11: if LΠφ,Πα 6= ∅ then
12: Iα =UPDATE(Iα, Aα, oφ)
13: for li in LΠφ,Πα do
14: πφ ← PLANNER(Πφ = 〈Fφ, Aφ, Iφ, li〉)
15: πα ← PLANNER(Πα = 〈Fα, Aα, Iα,¬li〉)
16: if c(πφ) >= c(πα + tr) then
17: return πα

games, where the actions are performed almost instantly. This
is the reason why we propose a lighter planning-based goal
recognition approach based on cost estimation gradient. It is
described in Algorithm 2. The algorithm takes as inputs the
current seeking agent’s problem and domain (F,A, I), a set
of hypothesis G , and the last observation (o). It estimates the
cost of achieving each of the candidate goals, both from the
previous input state I and the current state given the last ob-
served action I ′. This cost estimation can be performed using
any heuristic or actually solving the problem and obtaining a
plan. We compute this cost in parallel for each g ∈ Gφ to bet-
ter scale-up. The algorithm returns a list containing the cost
estimation difference ∆c between the new and the previous
state for all the goals in G.

Algorithm 2 COST ESTIMATION GRADIENT GR
Inputs: F,A, I,G, o
Outputs: ∆c, I

′

1: ∆c ← ∅
2: I ′ ←UPDATE(F,A, I, o)
3: for gi ∈ G do
4: cgi ← ESTIMATECOST(F,A, I, gi)
5: c′gi ← ESTIMATECOST(F,A, I ′, gi)
6: INSERT(c′gi − cgi ,∆c)
7: return ∆c, I

′

An example of this process is shown in Figure 1. In this
case, an agent (represented as a triangle) might want to
achieve G1 or G2. From its initial state, the ESTIMATE-
COST() function returns 〈6, 6〉 for G1 and G2 respectively.
After observing the first action of the agent, the function re-
turns 〈5, 7〉, being 〈−1, 1〉 the value of ∆c returned by our
goal recognition approach. We will refer to it as the function
RECOGNIZEGOALS(F,A, I,G, o).

Figure 1: Goal recognition example. The agent is depicted by
a triangle. Its goal can be either achieve G1 or G2.

Modelling StarCraft as Planning
StarCraft is a military science fiction real-time strategy video
game developed and published by Blizzard Entertainment.
The objective of a standard StarCraft match is to defeat your
opponents by eliminating their units and buildings. Although
there are different races featured in the game, for simplicity
we will only take into account the Terran race. The game-play
of StarCraft is based on resource management and base con-
struction. These elements are the key to create an army that
can overpower the enemy and, therefore, succeed in the game.
A player relies on two kind of basic resources: minerals and
vespene gas. The first one is necessary to build new structures
and produce new units. The second one is needed for more
advanced units and structures. Both of the resources can be
collected by a worker unit from the nodes placed in the map
and be brought to the main building. The resource is stored
and becomes available for its use. However, the vespene gas
can only be collected from the source (a vespene gas geyser)
by building an extraction structure on top of it (for the Terran
race, this structure is called a refinery). Different buildings or
units require different amounts of minerals or vespene gas to
be produced. When the sufficient amount has being collected,
the player can initiate the creation process, which takes a spe-
cific time to be completed depending on the kind of struc-
ture or unit. Once the units with attack capability have been
created, the player can attack the enemy. In the experiments,
we consider that all the actions are executed with cost (time)
equal to one.

In a standard StarCraft match, the most of the map is hid-
den to the player by the “fog of war”. This feature does not
let the player know the position of the enemy until that area
has been explored. The areas where there is a player’s build-
ing or unit are revealed only to this player. For purposes of
this work, the fog of war has been disabled during the exper-
iments, since the agent need total visibility of the actions of
the enemy to produce a counter plan.

We have reduced the standard match to a set of mini-games
in order to simplify the complexity of a whole StarCraft
match. In these mini-games, both players will be represented
only by one unit and the objective of each mini-game will
be different. In order to use the counter-planning technique,
we need to translate the features and actions of StarCraft to
a planning domain and the state of the game to a planning
problem.

For the planning domain, we need to replicate the actual
game dynamics using a set of objects, predicates, and actions.

We use the objects tile and building. The object tile is used to
identify the different positions in the actual map. Each tile
corresponds to a TilePosition, as it is called in StarCraft. The
object building is used to identify the different structures that
can be constructed during the game. For that purpose, we de-
fine a different type of object building for every type of struc-
ture in the game. The defined predicates are shown below:

• connected: this predicate represents the connection
between tiles in the map.

• at: this predicate indicates the position of a unit. We
have two predicates of this kind to identify both units in
the mini-game: “at” and “at-enemy”.

• empty: indicates if a tile is empty.

• at-vespene: indicates the position of a vespene gas
geyser.

• at-mineral: indicates the position of a mineral field.

• at-building: indicates the position of a structure.
There is a predicate of this kind for each type of struc-
ture in the game and for both players. As an example, we
define: “at-barracks”, “at-barracks-enemy”.

• carrying-mineral: indicates if a unit car-
ries a chunk of mineral. We have two pred-
icates of this kind to indentify both units in
the mini-game: “carrying-mineral” and
“carrying-mineral-enemy”.

• carrying-vespene: indicates if a unit
carries vespene gas. We have two predi-
cates of this kind to indentify both units in
the mini-game: “carrying-vespene” and
“carrying-vespene-enemy”.

• have-mineral: indicates that a unit has stored min-
eral. We have two predicates of this kind to indentify
both units in the mini-game: “have-mineral” and
“have-mineral-enemy”.

• have-vespene: indicates that a unit has stored
vespene gas. We have two predicates of this kind to in-
dentify both units in the mini-game: “have-vespene”
and “have-vespene-enemy”.

• alive: indicates that a unit is alive. We have two predi-
cates of this kind to identify both units in the mini-game:
“alive” and “alive-enemy”.

• building-built: indicates that a certain kind of
structure has been built. There is a predicate of this kind
for each type of structure in the game and for both play-
ers. As an example we define: “refinery-built”,
“refinery-built-enemy”.

• unit-trained: indicates that a certain kind of unit
has been created. There is a predicate of this kind for
each type of unit in the game: “marine-trained”,
“firebat-trained”, . . .

Along with these predicates, a set of planning actions have
been defined to represent all the possible actions that a unit
can perform during the game. These actions are:

(:action move
:parameters (?x1 - tile ?x2 - tile)
:precondition (and (at ?x1)

(connected ?x1 ?x2)
(empty ?x2))

:effect (and (not (at ?x1))
(at ?x2)
(not (empty ?x2))
(empty ?x1)))

Figure 2: Example of the move action in the PDDL format. It
moves the friendly unit from one tile to another.

• move: a unit moves between two tiles that are con-
nected. A PDDL representation of this action is shown
in Figure 2.

• attack-unit: a unit attacks an enemy’s unit. We in-
dicate a tile, and our unit attacks from that tile in its
range of attack.

• attack-structure: a unit attacks a certain struc-
ture. There is an action of this kind for each type of
structure in the game due to its different sizes.

• gather-resource: a unit gathers a resource
from a source. It is represented through two actions:
“gather-mineral” and “gather-vespene”.
This is due to the differences between the two actions.
Minerals can be extracted directly from the source, but
in order to gather vespene gas, a refinery must be built
on top of the vespene geyser beforehand.

• store-resource: a unit, which is currently carrying
a resource, stores it at the command center.

• take: a unit takes a chunk of resource present in the
map. These types of objects have been placed on the map
for some of the mini-games.

• build-structure: a unit builds a new structure in a
place with enough space in the map. There is an action
of this kind for each type of structure in the game. E.g.
“build-refinery”, “build-academy”, . . .

• train-unit: creating a new unit. There is an action
of this kind for each type of unit in the game. E.g.
“train-marine”, “train-firebat”, . . .

In this paper we assume deterministic action outcomes.
That is, the only changes in the environment state are the
ones described by the effects of the actions in the planning
domain model. For example, in the attack-unit action
we assume that the other unit dies after the attack.

We need to know the state of the game and translate it to
a PDDL file to define the planning problem. We get this in-
formation at each time step using the Brood War Application
Programming Interface (BWAPI). BWAPI lets us read all the
relevant information about the game state, like the organiza-
tion of the map or the positions of our own units, the oppo-
nent units, and other units or structures that appear on the
map. This information is saved into a PDDL file defining the
problem and into two other files that contain the observations

about the opponent’s units and the possible goals that the op-
ponent could be trying to achieve in the future.

In order to create the problem, we start detecting all of the
TilePositions that form our map for the mini-game. We use
tiles that units cannot step in like water or high ground to
model the shape of our custom maps for the mini-games. Ev-
ery tile is named using its coordinates in the game. Then, we
write the state of our players (alive by default), and the
positions of each player unit and every building. A unit only
occupies one tile, but a building needs more space, so it is rep-
resented by several at-building predicates. Then we pro-
ceed to specify the state of every tile, indicating as empty the
tiles that are not occupied by unit or a building, and declaring
the connections among them. The predicate connected is
uni-directional, so we need two predicates connected for
each pair of tiles to represent that they are fully connected
in both directions. We only consider horizontal and vertical
connections to simplify the complexity of the problem.

Finally, we identify the different goals that the enemy could
be targeting, such as taking the chunks of mineral, attacking
one of our buildings, or creating a certain type of structure or
unit.

Evaluation
We have created five different StarCraft mini-games to test
our approach. Each of the games is slightly more difficult
than the previous one and introduces some variants, such
as resources gathering, building construction, or troops con-
frontations. In all the mini-games there are two players, φ and
α, which handle Terran units. The seeking agent has a pre-
computed plan πφ that it will follow to achieve its actual goal
Gφ. This goal is hidden for the preventing agent. The mini-
games finish when the seeking player has achieved its initial
goal, or if the preventing player stops it. At each mini-game
we measure:

• |Gφ|: number of goals in the candidate goal’s set.
• |LΠφ |: number of common landmarks for the seeking

agent planning task.
• |LΠφ,Πα |: number of founded counterplanning land-

marks.
• %Obs: percentage of observed actions from the total φ’s

plan needed to perform the goal inference.
• Q: fraction of times that the actual goal Gφ was found

to be the most likely goal G′φ. Q = 1 indicates that the
opponent’s goal was correctly inferenced.
• E: fraction of times that α, executing πα, succeeds in

stopping φ in achieving its goals. Ideally, E = 1.
• Pe: penalty value computed as the number of steps in πφ

that have been performed before its actual goal becomes
unreachable, divided by the length of πφ. It represents
the cost paid by α at each time step that does not stop φ.
Lower values of Pe indicate better performance, ideally
Pe = 0.
• TQ: time in seconds taken for solving the goal recog-

nition problem. It is accumulated each iteration that a
counterplan cannot be generated.

Figure 3: Take the gem mini-game. g1 and g2 indicate the two
seeking’s possible goals. The actual goal of the seeking agent
is to take the gem at g1.

• TL: time in seconds taken for computing the landmarks.
• TE : total time in seconds taken for producing a counter-

plan.
• |πφ|: number of actions in the seeking agent’s plan.
• |πα|: number of actions in the generated counterplan.

Since StarCraft runs in Windows and the planners run in
Ubuntu, we communicate both parts of the architecture via
a TCP/IP connection. The StarCraft part of the architecture
runs on a Windows 10 machine with Intel Core i5-4210U
running at 1.7 GHz. The counterplanning algorithm runs on
an Ubuntu machine with Intel Core 2 Quad Q8400 running
at 2.66 GHz. We use the LMCUT heuristic [Pommerening
and Helmert, 2013] for cost estimation and the PROBE plan-
ner [Lipovetzky et al., 2014] for plans computation. The next
subsections describe the mini-games and the results obtained.

Take the Gem
The first mini-game takes places in a 64x20 map. Each player
only controls one unit. The seeking agent is located at the
bottom of the map, while the preventing agent is located at
the top side. There are two possible goals (|G| = 2) that φ
may want to achieve: the top-left gem g1 or the top-right gem
g2. This initial situation is depicted in Figure 3.

The actual φ’s goal is to achieve g1. After its first move-
ment, α is able to correctly guess it and start to compute the
involved landmarks. There are three landmarks: at-enemy
s31-18, the initial location of the seeking agent, which is al-
ways a landmark; at-enemy s3-3, the position where the
enemy needs to be in order to achieve g1; and at-target
s3-3, the position of the gem. From this set of landmarks,
the only counterplanning landmark that the preventing agent
can falsify is at-target s3-3, given that there is an ac-
tion in its domain that deletes the at-target predicate.
After the costs calculation to ensure that it can reach that
landmark before the opponent does it, not (at-target
s3-3) becomes preventing’s goal, generating a counterplan
πα to achieve it. Figure 4 shows the moment when α takes
the gem before its opponent. The results for this experiment
as well as the others are shown in Table 1.

Gathering or Attacking?
The second mini-game takes place in a 64x64 map with Y
shape as depicted in Figure 5. There are two mineral fields,
one at the top-right and other at the top-left side of the map;
the latter is the actual goal of φ. There are two command cen-
ters: one at the top (preventing agent) and another one at the
bottom (seeking agent). The preventing agent thinks that the

Mini-game |Gφ| |LΠφ | |LΠφ,Πα | %Obs Q E Pe TQ TL TE |πφ| |πα|
Take the gem 2 3 1 2.2 1 1 0.8 1.8 1.9 4.8 44 30

Gathering or attacking? 3 6 3 1.4 1 1 0.2 1.1 1.7 3.4 70 12
Gathering in the maze 3 3 1 79.5 1 0 ∞ 19.2 1.5 - 78 -

Base construction 2 11 3 1.9 1 1 0.6 12.7 2.7 24.4 51 9
Training army 2 6 2 2.6 1 1 0.5 3.1 2.2 4.3 75 30

Table 1: Table that summarizes the results obtained in the five mini-games.

Figure 4: Moment when the preventing agent takes the gem
before its opponent.

Figure 5: Resource gathering or attacking mini-game. The ac-
tual goal of the seeking agent is to gather the resources at g1.
The landmark point indicates where the preventing’s unit will
stand to attack seeking’s unit and block its goal achievement
process.

opponent may want to gather resources from any of the min-
eral fields or attack its command center. The seeking agent
running our counterplanning algorithm is able to find a com-
mon landmark that blocks the achievement of any of the can-
didate goals. So a counterplan is generated to send a unit to
the bottle-neck spot placed in the middle of the Y.

Gathering in the Maze
The third mini-game takes place in a 64x64 maze-like map as
depicted in Figure 6. In this case, there are three mineral fields
placed in the map, one at the top-left, one on the right and one
almost at the center of the map. As before, the seeking agent
is placed at the bottom and the preventing agent at the top
of the map. A set of bottleneck spots have been also placed
around the map to allow blocking the path of the enemy. The
preventing agent thinks that the goals that the seeking agent is
pursuing are gathering mineral from one of the mineral fields.

Figure 6: Resource gathering in a maze mini-game. The ac-
tual goal of the seeking agent is to gather the minerals at g2.

In this experiment, the preventing agent is not able to find a
common landmark to block the enemy’s in advance, since the
shape of the maze allows the seeking agent going through
two different paths to any point of the map. If the goal is the
mineral field at the center of the map, the preventing agent
cannot infer this until the seeking agent has completed almost
80% of its whole plan. That is when the seeking agent has
reached the spot at the middle part on the left of the map and
begins to go right. At that time, the preventing agent cannot
make it on time to block it.

Base Construction
The fourth mini-game takes place in a 64x26 map as depicted
in Figure 7. There is one mineral field placed on the right
and one vespene geyser placed at the top-left of the map. The
positions of the two agents are the same as in the previous
experiments. There are also a command center and a barrack
for the seeking agent, which lets it build the structures that we
are considering as possible goals for this experiment: build-
ing a supply depot or a factory. When the seeking agent starts
to go to the left, the preventing agent considers that it is going
to the vespene geyser placed on top and tries to counterplan
by blocking its opponent way to the bottleneck point, which
is a landmark. The preventing agent believes that the seek-
ing agent’s final goal is to build a factory. In order to achieve
that, the seeking agent needs to build a refinery on top of the
vespene geyser, extract the vespene, store it in the command
center and, finally, build the factory. The preventing agent
gets to the landmark point when the seeking agent is about
to reach the same point, blocking its way. The seeking agent
has only completed 1.9% of its plan.

Training Army
The fifth mini-game takes place in the exact same map that
was used for the fourth experiment as depicted in Figure. 8.

Figure 7: Base construction mini-game. The actual goal is to
build a factory. The landmark point indicates where the pre-
venting agent is going to stand to block the way and attack.

Figure 8: Training army mini-game. The preventing agent de-
tects a common landmark for both goals: destroying the bar-
racks. The actual goal is to train a firebat.

For this experiment we have also placed an academy for the
seeking agent, which allows it to train different kinds of units.
This time, the possible goals that the seeking agent might be
pursuing are training a marine or training a firebat. For the
first goal, it needs to gather mineral, store it in the command
center, and then train the marine using the barracks. For the
second goal, the seeking agent needs also to gather and store
vespene gas. Independently of the seeking agent’s actions, the
preventing agent will figure out that the common landmark
that can invalidate both goals is to destroy the barracks where
the units are trained. The preventing agent attacks the bar-
racks when the seeking agent has only completed 2.6% of its
plan.

Discussion and Future Work
In this paper we have presented a technique that addresses
one of the major challenges on AI applied to RTS games:
synthesize plans from scratch to oppose the opponent strat-
egy. We have introduced two main modifications to our previ-
ous domain-independent counterplanning algorithm to prop-
erly work in a real time environment: (1) use cost estimation
rather than plan computation in the goal recognition phase;
and (2) select any spot where the opponent can be blocked
rather than reasoning about the best stop where to block it.
We have tested our approach in five different StarCraft mini-
games. Some of the objectives of the mini-games include
resource gathering, troop confrontations and building order,
which are part of a real StarCraft game.

Experimental results show that our algorithm is able to pro-
duce counterplans in most of these situations. Moreover, our
approach is not only able to guess the opponent goal soon

(low %Obs); it also reasons about intermediate spots (land-
marks) where the opponent could be blocked. In fact, most of
the times the preventing agent blocks its opponent when it has
performed only a part of its plan (Pe < 1). It is also important
to note that in our experiments, we always guessed the oppo-
nent’s goal right (Q = 1) and most of the times we needed a
low percentage of observations. These results show that our
counterplanning algorithm can effectively generate plans to
counter opponent’s strategies. However, much work remains
to be done in order to apply counterplanning in a complete
StarCraft game:

• Our algorithm scales poorly with the size of the maps.
All of our experiments were ran in 64x64 maps (or
even subsets of them), while an average StarCraft map
is twice the size. We will abstract the tiles generating
meta-tiles in order to better scale-up to larger maps.

• Although the seeking agent’s plans πφ are quite large,
they have a low number of landmarks. As the fourth
experiment shows, the more landmarks it detects, the
longer it will take it to extract them and generate a coun-
terplan (larger TE’s value). When producing counter-
plans for long-time opponent’s strategies, many land-
marks can be found and our technique would delay too
much. Some improvements on the landmark’s extraction
process should be applied to save up time.

• The presented mini-games are designed so that the pre-
venting agent can stop its opponent most of the times
(E = 1). α stands still observing φ’s actions, so it is los-
ing time while its opponent is actually moving. This fact,
along with the average counterplanning time TE of more
than 4 seconds, make only possible to stop the opponent
at some specific circumstances. The counterplanning re-
sults are good when: (1) the preventing agent can guess
its opponent goal with a low percentage of observations;
and (2) the preventing agent is closer to the goal or a
landmark (|πα|+TE < |πφ|). On the other hand we have
the maze experiment, where α can only infer the goal (or
find a common landmark) after the 80% of the opponent
plan has been executed. In this case, it does not make
it on time to prevent the seeker from achieving its goal.
At this point some improvements can be done, as start
moving to more promising spots while observing the
opponent rather than standing still; or performing some
kind of anticipatory planning [Pozanco et al., 2018b;
Fuentetaja et al., 2018]. This will allow the preventing
agent to stop its opponent more often.

• Finally, in the presented experiments we assume that the
opponent neither replans nor changes its goals. This is
a strong assumption that we will delete in the future by
continuously monitoring and reasoning about the oppo-
nent intentions.

Acknowledgements

This work has been partially supported by MINECO projects
TIN2014-55637-C2-1-R and TIN2017-88476-C2-2-R.

References
[Aha et al., 2005] David W Aha, Matthew Molineaux, and

Marc Ponsen. Learning to win: Case-based plan selection
in a real-time strategy game. In International Conference
on Case-Based Reasoning, pages 5–20. Springer, 2005.

[Buro, 2003] Michael Buro. Real-time strategy games: A
new AI research challenge. In IJCAI, 2003.

[Carbonell, 1981] Jaime G Carbonell. Counterplanning: A
strategy-based model of adversary planning in real-world
situations. Artificial Intelligence, 16(3):295–329, 1981.

[Churchill et al., 2012] David Churchill, Abdallah Saffidine,
and Michael Buro. Fast heuristic search for rts game com-
bat scenarios. In AIIDE, pages 112–117, 2012.

[E-Martı́n et al., 2015] Yolanda E-Martı́n, Maria D R-
Moreno, and David E Smith. A fast goal recognition tech-
nique based on Interaction estimates. In IJCAI, 2015.

[Fuentetaja et al., 2018] Raquel Fuentetaja, Daniel Borrajo,
and Tomás de la Rosa. Anticipation of goals in automated
planning. AI Communications, pages 1–19, 2018.

[Geib and Goldman, 2009] Christopher W Geib and
Robert P Goldman. A probabilistic plan recognition algo-
rithm based on plan tree grammars. Artificial Intelligence,
173(11):1101–1132, 2009.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau, and Paolo
Traverso. Automated Planning: theory and practice. Else-
vier, 2004.

[Hoffmann et al., 2004] Jörg Hoffmann, Julie Porteous, and
Laura Sebastia. Ordered landmarks in planning. Journal
of Artificial Intelligence Research, 22:215–278, 2004.

[Jaidee et al., 2011] Ulit Jaidee, Héctor Muñoz-Avila, and
David W Aha. Case-based learning in goal-driven auton-
omy agents for real-time strategy combat tasks. In ICCBR
Workshop on Computer Games, 2011.

[Kabanza et al., 2010] Froduald Kabanza, Philipe Belle-
feuille, Francis Bisson, Abder Rezak Benaskeur, and
Hengameh Irandoust. Opponent behaviour recognition for
real-time strategy games. Plan, Activity, and Intent Recog-
nition, 10(05), 2010.

[Lipovetzky et al., 2014] Nir Lipovetzky, Miquel Ramirez,
Christian Muise, and Hector Geffner. Width and inference
based planners: Siw, bfs (f), and probe. International Plan-
ning Competition, 2014.

[Ontañón et al., 2013] Santiago Ontañón, Gabriel Synnaeve,
Alberto Uriarte, Florian Richoux, David Churchill, and
Mike Preuss. A survey of real-time strategy game ai re-
search and competition in starcraft. IEEE Transactions on
Computational Intelligence and AI in games, 2013.

[Pommerening and Helmert, 2013] Florian Pommerening
and Malte Helmert. Incremental lm-cut. In ICAPS, 2013.

[Pozanco et al., 2018a] Alberto Pozanco, Yolanda E-Martı́n,
Susana Fernández, and Daniel Borrajo. Counterplanning
using goal recognition and landmarks. In IJCAI, 2018.

[Pozanco et al., 2018b] Alberto Pozanco, Susana Fernández,
and Daniel Borrajo. Learning-driven goal generation. AI
Communications, pages 1–14, 2018.

[Preuss et al., 2013] Mike Preuss, Daniel Kozakowski, Jo-
han Hagelbäck, and Heike Trautmann. Reactive strategy
choice in starcraft by means of fuzzy control. In CIG.
IEEE, 2013.

[Ramı́rez and Geffner, 2009] Miquel Ramı́rez and Hector
Geffner. Plan recognition as planning. In IJCAI, pages
1778–1783, 2009.

[Ramı́rez and Geffner, 2010] Miquel Ramı́rez and Hector
Geffner. Probabilistic plan recognition using off-the-shelf
classical planners. In AAAI, 2010.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. Journal of Artificial Intel-
ligence Research, 39:127–177, 2010.

[Sailer et al., 2007] Frantisek Sailer, Michael Buro, and
Marc Lanctot. Adversarial planning through strategy sim-
ulation. In Computational Intelligence and Games, 2007.
CIG 2007. IEEE Symposium on, pages 80–87. IEEE, 2007.

[Stanescu and Čertickỳ, 2016] Marius Stanescu and Michal
Čertickỳ. Predicting opponent’s production in real-time
strategy games with answer set programming. IEEE
Transactions on Computational Intelligence and AI in
Games, 8(1):89–94, 2016.

[Stanescu et al., 2014] Marius Stanescu, Nicolas A Barriga,
and Michael Buro. Hierarchical adversarial search applied
to real-time strategy games. In AIIDE, 2014.

[Sukthankar et al., 2014] Gita Sukthankar, Christopher
Geib, Hung Hai Bui, David Pynadath, and Robert P
Goldman. Plan, activity, and intent recognition: theory
and practice. Newnes, 2014.

[Tavares et al., 2016] Anderson Tavares, Hector Azpurua,
Amanda Santos, and Luiz Chaimowicz. Rock, paper, star-
craft: Strategy selection in real-time strategy games. In
AIIDE, 2016.

[Uriarte and Ontañón, 2014] Alberto Uriarte and Santiago
Ontañón. Game-tree search over high-level game states
in rts games. In AIIDE, 2014.

[Vered and Kaminka, 2017] Mor Vered and Gal A Kaminka.
Heuristic online goal recognition in continuous domains.
In IJCAI, 2017.

[Weber and Mateas, 2009] Ben G Weber and Michael
Mateas. A data mining approach to strategy prediction. In
Computational Intelligence and Games, 2009. CIG 2009.
IEEE Symposium on, pages 140–147. IEEE, 2009.

[Wender and Watson, 2014] Stefan Wender and Ian Watson.
Combining case-based reasoning and reinforcement learn-
ing for unit navigation in real-time strategy game AI. In
ICCBR, 2014.

