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Abstract
Recent research has found situations where the
identification of agent goals could be purposefully
controlled, either by changing the underlying en-
vironment to make it easier, or exploiting it dur-
ing agent planning so as to delay the opponent’s
goal recognition. The paper tries to answer the fol-
lowing questions: what kinds of actions contain
less information and more uncertainty about the
agent’s real goal, and how to describe this uncer-
tainty; what is the best way to control the process
of goal identification. Our contribution is the in-
troduction of a new measure we call relative goal
uncertainty (rgu) with which we assess the goal-
related information that each action contains. The
rgu is a relative value associated with each action
and represents the goal uncertainty quantified by
information entropy after the action is taken com-
pared to other executable ones in each state. After
that, we show how goal vagueness could be con-
trolled either for one side or for both confronting
sides, and formulate this goal identification control
problem as a Mixed-Integer Programming problem.
Empirical evaluation shows the effectiveness of the
proposed solution in controlling goal identification
process.

1 Introduction
Goal recognition, the ability to recognize the plans and goals
of other agents, enables humans, AI agents or command and
control systems to reason about what the others are doing,
why they are doing it, and what they will do next [Sukthankar
et al., 2014]. Until now, goal recognition system works well
in many applications like human-robot interaction [Hofmann
and Williams, 2007], intelligent tutoring [Min et al., 2014],
system intrusion detection [Geib and Goldman, 2001] and se-
curity applications [Jarvis et al., 2005].

Though this technique has been successfully applied to
many application domains, new problem arises when goal
recognition encounters with goal uncertainty discovered in
certain environmental settings. Figure 1 offers a simple ex-
ample that is first mentioned in [Keren et al., 2014] and will
help to clarify the concepts of our work.

Figure 1: An example where goal identification process could
be controlled

The model consists of a simple room (or airport) with a sin-
gle entry point, marked as ‘Start’ and two possible exit points
(boarding gates), marked as ‘Goal 1’ (domestic flights) and
‘Goal 2’ (international flights). An agent can move vertically
or horizontally from ‘Start’ to one of the goals. Notice that
in this model, the goal of the agent becomes clear once turn-
ing left or right, while moving vertically would impose goal
uncertainty on goal recognizers and postpone the goal iden-
tification. Therefore, in the worst case an optimal agent can
move up 4 steps before it is obliged to turn towards its goal.

The goal uncertainty showed in the above example could
be viewed as an inherent property of one particular goal
recognition task, and pose a new challenge to effective goal
reasoning. The problem finds itself relevant in many of the
similar applications of goal recognition tasks where goal un-
certainty exists. Also, it should be noted that, apart from
the friendly situation in Figure 1 and works in [Keren et al.,
2014], the goal uncertainty could further be used as a poten-
tial backdoor for the adversary to delay goal identification.

Therefore, this paper focuses on effective control of the
goal identification process. As a first stage of our exploration,
we assume agents are optimal and that the actions of the agent
are fully observable and deterministic. In order to achieve our
objective, we introduce a new concept called relative goal un-
certainty (rgu), with which we assess the goal-related infor-
mation that each action contains. The rgu is a relative value
associated with each action that agent would take and repre-
sents the goal uncertainty quantified by information entropy



after the action is taken compared to other executable ones in
each state.

The rgu value associated with each action helps in assess-
ing the uncertainty that exists in goal recognition task, and
our goal is to provide methods for agents to control it. To-
wards this end, we define two optimization models based on
Mixed-Integer Programming, one of which reduces the goal
uncertainty through limiting the set of available actions an
agent can perform, the other one delays goal identification
through balancing the reward and goal uncertainty during
mission planning.

Goal identification control, while relevant to goal recog-
nition [Sukthankar et al., 2014] or goal reasoning, is a dif-
ferent task. While goal recognition aims at discovering
the goals of an agent according to observations, goal iden-
tification control rather offers an offline and online com-
bined solution for assessing and controlling the goal uncer-
tainty in order to assure the goal of any optimal agent in
the system is recognized. Also, different from goal recog-
nition design problem [Keren et al., 2014; Son et al., 2016;
Wayllace et al., 2017] which purely focuses on facilitating
goal recognition offline, goal identification control provides a
more compact solution for agents to control the goal uncer-
tainty and allows this additional information to be incorpo-
rated into ongoing missions.

Finally, considering the situation where both confronting
sides are trying to control the goal identification process
(i.e., both sides are behaving in a strategic game-theoretic
manner), the paper then proposes the Shortest-Path Largest-
Uncertainty Network Interdiction model (SPLUNI), which
could be viewed as a bilevel mixed-integer program, and is
also a special case of a static Stackelberg game. The SPLUNI
model is transformed into its dual form using KKT conditions
and computed using mixed-integer programming method.

The paper is organized as follows. We start by providing
the necessary background on probabilistic goal recognition.
We continue by introducing the formal model representing
the goal identification control problem, and the rgu value.
The following sections present the methods we developed for
calculating rgu and controlling the goal uncertainty of a given
goal identification control problem. We conclude with an em-
pirical evaluation, a discussion of related work, and a conclu-
sion.

2 Probabilistic Goal Recognition
[Xu et al., 2017] shows a simple yet effective probabilistic
goal recognizer based on Markov Decision Process (MDP).
The probabilistic goal recognition model is defined by a tuple
D = ⟨S, s0, A, f,G, e,O⟩, where S is a finite and discrete
state space; s0 is the start state of the agent; A is the set of
actions; f : S×A → S is a deterministic state transition func-
tion; G is a set of goal states; e is the goal termination variable
and O is a non-empty observation set. Essentially, the model
is a dynamic Bayesian network, in which all causalities could
be depicted. We introduce a full DBN structure depicting two
time slices is presented in Figure 2. The behaviors of system
evolution are described using functions or parameters.

• state transition function T :S×A×S→ [0, 1] is Psτ =

p(sτ |sτ−1, aτ ),

• observation function S×O→ [0, 1] is Poτ = p(oτ |sτ ),
• agent action policy Paτ = p(aτ |sτ−1, gτ ),

• goal transition probability Pgτ = p(gτ |eτ−1, gτ−1),

• goal termination probability Peτ = p(eτ |gτ , sτ ).
Recognizing the evader’s goal is an inference problem try-

ing to find the real goal behind agent actions based on obser-
vations online. In essence, the task is to compute the posterior
distribution P (gτ |oτ ) of goal gτ given observation oτ . This
could be achieved either by accurate inference or by approxi-
mate methods.
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Figure 2: The DBN structure of the model

3 Relative Goal Uncertainty
Given the set of possible goal states G and the current ob-
servation oτ , the probability distribution over possible goals
P (G|oτ ) actually reflects the goal uncertainty the agent will
encounter after selecting actions A(sτ ) and reaches the next
state oτ (assuming fully observable and deterministic) ac-
cording to f . This enlightens us to use the goal inference
information one step ahead to measure the goal uncertainty
associated with available actions at each state, specifically the
adjacent edges directing out of each node in the road network
example.

Defined over each possible action ai ∈ A(s) at state s,
the metric rgu is a relative value describing the overall uncer-
tainty performance of state s before and after the action a’s
interdiction. Intuitively, this could be done by summing up
the information entropy of the pre-computed, next-step goal
probability which are reasoned about in the goal recognition
problem D = ⟨S, si, A, f,G, e,O = {si, sj}⟩, where si ∈ S
and sj ∈ FS(si), the set of states that could arrive at accord-
ing to f(si).

Definition 1. (Entropy-based rgu) The Entropy-based rgu
(rguE) over a goal identification control problem is defined
as:

rguE(s, ai) =

∑
aj∈A′(s) H(G|aj ,s)

|A′(s)|
(1)



where ai ∈ A(s), aj ∈ A′(s), and A′(s) = A(s)\ai.
The entropy H(G|aj , s) computes the goal uncertainty
contained in the reasoning result, and H(G|aj , s) =
−
∑

p(G|aj , s) · log p(G|aj , s). Technically, we also need to
remove zero entries of p(G|aj , s), followed by normalization
guaranteeing that sum(p) = 1.

The rguE quantified by entropy H evaluates the goal un-
certainty in a natural and compact way. More uncertainty
introduced after the agent takes its action gives less informa-
tion to goal recognizer and postpones the goal identification
process. As the example in Figure 1 and assuming the agent’s
are fully optimal, the rguE for three actions leading to states
(2, C), (1, B) and (1, D) are 0.32, 0.00 and 0.00 respectively.
Also, the definition of rguE could easily be applied to tasks
where |G| > 2.

It should be noted that, the definition of rguE makes sure
that this metric can be naturally applied to the situation where
the agent changes its goal during the midway, as shown in
Theorem 1.

Theorem 1. The rguE definition is applicable to goal chang-
ing situations.

Proof. As rguE is defined using posterior p(G|ai, s) com-
puted in goal recognition task D, thus it only depends on
the problem structure D = ⟨S, s0 = si, A, f,G, e,O =
{si, sj}⟩, ∀si ∈ S. Thus rguE value has nothing to do with
agent’s particular starting point.

To illustrate how rguE would be used in goal identification
control problem and for clarity, we compute the values upon
a 3 ∗ 3 grid network (Figure 3 (a)) with nodes representing
grids and dashed edges connecting nodes.

(a) (b)

Figure 3: The rguE and Discounted rgu in a 3*3 grid network

Selecting absorbing nodes No.1 and No.3 as possible goals,
we compute rguE for each action depicted as dashed line, as
shown in Figure 3 (a). Higher rguE means greater uncer-
tainty associated with that action. Here we discuss two path
planning tasks T and T ′, where the agent has different start-
ing points (s0 = 9 or s0 = 8). The tasks are defined as
T = ⟨S,A, f, C ′, G = {1, 3}, s0⟩, with C ′ = C + rguE to
model the road barrier, patrolling police or other methods the
goal recognizer could use in order to control the goal identi-
fication process.

For the first task, the agent would choose h = ⟨9, 8, 7, 4, 1⟩
for goal No.1 and h = ⟨9, 6, 3⟩ for goal No.2. While for the

second task, using the definition of rguE , the agent would
choose one of the two optimal routes (h = ⟨8, 7, 4, 1⟩ or h =
⟨8, 5, 4, 1⟩), other than h = ⟨8, 5, 2, 1⟩ for goal No.1, and
h = ⟨8, 9, 6, 3⟩ or h = ⟨8, 5, 6, 3⟩ other than h = ⟨8, 5, 2, 3⟩
for goal No.3. For the latter case, we find that rguE cannot
help the agent capture the fact in goal identification control
that early interdiction would be more important than a later
one.

In order to solve this problem, we define a Discounted rgu
so as to reduce the rgu value along with the increase of the
number of steps that agent has taken from the start. For agent
changing its goal during the midway, we could recompute
this value from the original rguE . Case 3.1 shown in Section
4.1, which is talked about in the next section, gives a good
indication of this situation occurrence.

Definition 2. (Discounted rgu) The discounted rgu (rgudis)
of a goal identification control problem is defined as:

rgudis(s, ai) = rgu(s, ai) ∗ βd (2)

where β is the discount factor and d is the number of steps
that agent has taken from the start.

With the discount rate equals to 0.8, Figure 3 (b) shows the
discounted rgu values which have been adjusted according to
its importance to the goal identification control task.

4 Goal Identification Control

In this section, we show how to control the rgu using the op-
timization technique. Instead of requiring the cost of cost-
minimal plans to achieve each goal g ∈ G be the same before
and after removing the subset of actions, as researched about
in Goal Recognition Design problem [Keren et al., 2014], we
are more interested in deliberate changing goal uncertainty
under adversarial settings where the resource constraint com-
pared to optimality conservation is more applicable. Also,
the original way of removing actions permanently is changed
“softer” by adding additional costs to actions.

4.1 Reduction and Improvement of rgu

The goal identification control models based on optimization
techniques are introduced. We first present models which
are individually used for reducing and improving goal uncer-
tainty for the different sides of the goal recognition task. Then
we talk about the applicability of the offline-computed rgu in
the online goal identification control.

The models could be transformed into the problem of max-
imizing (minimizing) the expectation of s − t path length,
with the rgu being proportionally added to the original length.
The mathematical-programming formulation of our new goal



identification control model is as follows:
Problem: Maximize (Minimize) the expectation s − t

path length in a directed network by interdict-
ing arcs,

Indices: i ∈ N , nodes in G (s is the current source node,
t is the terminus ),
k = (i, j) ∈ A, arcs in G,
k ∈ FS(i)(k ∈ RS(i)), arcs directed out of
(into) node i,

Data: ck = 1, normal length of arc k (vector form c),
dk = 1, added integer delay if arc k is inter-
dicted (vector form d),
rguk, relative goal uncertainty of arc k (vector
form rgu)
rk = 1, resource required to interdict arc k
(vector form r),
R, total amount of interdiction resource,

Variables: xk = 1 if arc k is interdicted by the interdictor;
else xk = 0,
yk = 1 if arc k is traversed by the evader; else
yk = 0

The formulation of rgu reduction problem ([RGUR-P]) for
the observer is:

[RGUR-P] max
x∈X

∑
k∈A

(ck + xkdk(1 + rguk))yk

∑
k∈FS(i)

yk−
∑

k∈RS(i)

yk=

{
1 for i = s
0 ∀i ∈ N\{s, t}
−1 ∀i = t

(3)

xk, yk ∈ {0, 1}, ∀k ∈ A (4)

where X = {x ∈ {0, 1}|A||rTx ≤ R}, Eq. (3) is the flow-
balance constraint.

While the formulation of rgu improvement problem
([RGUI-P]) for the observed agent is:

[RGUI-P] min
y

∑
k∈A

(ck + xkdk)yk
1 + rguk

∑
k∈FS(i)

yk−
∑

k∈RS(i)

yk=

{
1 for i = s
0 ∀i ∈ N\{s, t}
−1 ∀i = t

(5)

xk, yk ∈ {0, 1}, ∀k ∈ A (6)

where X = {x ∈ {0, 1}|A||rTx ≤ R}. Thus with ad-
ditional goal uncertainty information, the problem could be
transformed into network interdiction models, which are of a
typical mixed-integer program (MIP) and solved using linear
programming algorithms.

Figure 4 shows two moving traces of the observed agent
under [RGUR-P] and [RGUI-P] problems. The observer
could use [RGUR-P] to reduce the enemy’s goal uncertainty
and accelerate situation awareness, while the observed agent,
after analyzing the observer’s goal recognition task, could ac-
tually use [RGUI-P] to cover its real intention to the maxi-
mum extent. General results would be given in Section 5.

Note that, until now, the metric rgu used for assessing goal
uncertainty is defined over actions available at each state in
an offline manner, i.e., p(G|ai, s) are computed according
to P (G|O) = αP (O|G)P (G), with prior probability P (G)
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Figure 4: The moving traces (blue line for agents moving
after the observer’s interdiction; red for the observed agent
selecting the most ambiguous path) and their corresponding
recognition results p(G|O) for the example shown in Figure
1 (a).

following Uniform distribution, instead of over agent’s full
course of actions where the real-time P ′(G) contains history
information, this may incur uncertainty inconsistency among
individual states and the whole task. Fortunately, our def-
inition of rgu has no effect on problem solving of the goal
identification control,

Case 1: If the real-time prior P ′(G) cannot help observer
distinguish the right goal, meaning that H(P ′(G)) is rela-
tively high. Then it is naturally established for agents choos-
ing actions with either high or low uncertainty.

Case 2: If P ′(G) distinguishes the goals clearly where
H(P ′(G)) is relatively low, and agent chooses the action that
has high uncertainty, i.e., rgu ̸= 0, then highly uncertain ac-
tion would input little information to the original beliefs about
agent goals. The agent’s belief of the right goal would still
maintains. However, in this case, resource needed for action
interdiction would be wasted as little information would be
given and agent’s intention usually maintains for a period.

Case 3: Also if P ′(G) distinguishes the goals clearly, e.g.
the prior P ′(g) for goal g with the largest value, while agent
chooses the action that has low uncertainty rgu, then two
cases should be considered. Firstly, agent’s belief of the right
goal has changed according to the posterior P (G|o) (Case
3.1). This happens when the agent is changing its goal from
g to g′ during the midway, and thus chooses the action that
will lead to g′. Secondly, the computed posterior P (G|o) still
capture the right goal g (Case 3.2). For both cases, the rgu
works properly.

4.2 The SPLUNI Model and its Dual Form
After individually talk about rgu reduction and improve-
ment, in this section we propose a Shortest-Path Largest-
Uncertainty Network Interdiction model (SPLUNI), where
uncertainty becomes another optimization objective along
with path length. The SPLUNI model could be viewed as
a bilevel mixed-integer program (BLMIP), and is a special
case of static Stackelberg game.

The problem description of SPLUNI is similar to [RGUR-
P] and [RGUI-P], whereas it is described as maximizing the
expectation of the shortest s − t path length while minimiz-



ing the largest uncertainty and 0 ≤ ck, dk, rk < ∞. Its
mathematical-programming formulation is given as:

[SPLUNI-P] max
x∈X

min
y

∑
k∈A

(ck + xkdk(1 + α ∗ rguk))yk
1 + β ∗ rguk

with the same constraints as Eq. (3), Eq. (4) and rTx ≤
R. α, β are parameters controlling the importance of goal
uncertainty between two objectives.

As a BLMIP problem, which cannot be solved directly us-
ing the MIP approaches, we propose a dual reformulation of
SPLUNI. Fix the outer variable x and take the dual of the
inner minimization using KKT conditions, the final MIP for-
mulation is given as:

[SPLUNI-D] max
x∈X,π⃗

bT π⃗

s.t. KT π⃗ = c′ +D′x (7)

πs = 0 (8)

where K is the network matrix controlling y as in Eq. (3),
rTx ≤ R, b = (1, 0, · · · , 0,−1)T , c′k = ck/(1 + β ∗ rguk)
and d′kk = dkk ∗ (1 + α ∗ rguk)/(1 + β ∗ rguk).

5 Experiments
For simplicity, we select a reduced Chicago Sketch Road Net-
work [Xu et al., 2017] expanded from the vertex No.368 to
its neighbours and neighbours’ neighbours for 5 times, con-
sisting 51 vertexes and 113 edges. The computations of the
RGUR and RGUI are formulated into a BLMIP, and SPLUNI
into a BLMIP and solved using the MIP solvers of CPLEX
11.5 and YALMIP toolbox of MATLAB [Lofberg, 2005].
Nontrivial details are omitted.

5.1 Tests on Uncertainty Reduction
Upon the reduced Chicago sketch road network, a goal recog-
nition task is defined where s0 = start, G = {goal1, goal2}
as shown in Figure 5 (c). We first show the influence of uncer-
tainty on the goal recognition system and how rgu reduction
model could be used in advancing situation awareness. A test
dataset consisting of 100 labeled traces for each goal is col-
lected using agent decision model.

Evaluated using F-measure, which is a metric that has been
frequently used to measure the overall accuracy of recognizer
[Sukthankar et al., 2014], goal uncertainty associated with
certain domains indeed seriously impedes effective recogni-
tion (Figure 5 (a) and (b)). Under [RGUR-P] model, the val-
ues of F-measure after the network redesignation increases to
almost 1 the moment agent selects its first action, compared
to values under tasks with no changes and the most ambigu-
ous situation ([RGUI-P]). Also, we statistically evaluate the
maximum early prediction that our model enables according
to Convergence Point metric [Sukthankar et al., 2014], de-
fined as 0 < τ = CPoint ≤ T , s.t. pτ (gtrue|oτ ) ≥ β.
For tests in Section 5, β = 0.8. We test recognition tasks
D = {s0, G = {goal1, goal2}} for ∀s0 ∈ S\{G,U}, where
U is the set of nodes having no available paths to G, and
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Figure 5: The statistical evaluation of uncertainty influence
on goal recognition upon a reduced sketch road network.

compare early convergence between [RGUR-P] and [RGUI-
P] using

RelConvergeRatio =
CPointI − CPointR
|h = ⟨s0, . . . , gi⟩| − 1

(9)

Clearly, both for tasks where gtrue equals to goal1 and
goal2, there are considerable reductions of goal uncertainty.
Also it should be noted that, although the uncertainty widely
exists in many recognition tasks, it does not exist in all
cases. Further for generality, we test 3 more cases where
G1 = {goal2, goal3}, G2 = {goal1, goal3}, G3 =
{goal1, goal2, goal3}, as shown in Table 1.

Table 1: The number of cases (discard states unreachable to
gtrue) fall in intervals of Relative convergence ratio (rcr(%)).
“/” separates results with elements in G being the true goal.

G\rcr(%) 0 ≤ 20 ≤ 40 ≤ 60 ≤ 80
{goal2, goal3} 23/24 1/3 3/3 2/0 1/0
{goal1, goal3} 25/31 2/4 6/0 0/0 0/0
{g1, g2, g3} 15/21/19 3/6/1 4/1/4 3/1/1 0/0/0

5.2 Performance of SPLUNI
Finally we test the performance of SPLUNI (set α = β = 1),
which is the game between the observer (interdictor) and the
observed agent (evader), in maximizing the expectation of
the shortest s − t path length while minimizing the largest
uncertainty, as shown in Table 2. We first define the path
interdiction efficiency as E = ∆L/(dT ∗ x) where ∆L is
the increased path length for evader after interdiction and
dT ∗x is the total length increase in the network. The tests are
conducted over those ambiguous cases in three goal settings.



E(E) and E(rcr) help us understand the impact of SPLUNI
model on both network interdiction and goal uncertainty re-
duction.

Table 2: The expectations of path interdiction efficiency and
relative convergence ratio (rcr(%)) for different goal setting.

{g1, g2} {g1, g3} {g2, g3}
E(E) 56.0/73.6 63.4/67.0 77.4/90.7
E(rcr) 19.7/13.3 7.4/9.1 2.3/1.9

Clearly, SPLUNI model works well for observer by adding
the evader’s path length and at the same time reducing the
goal uncertainty during the process. This is of value for se-
curity domains where high-value targets need to be timely
recognized meanwhile the intruder’s actions be delayed.

6 Background and Related Work
6.1 Model-based Probabilistic Goal Recognition
The goal recognition problem has been formulated and ad-
dressed in many ways, as a matching problem over a suit-
able AND/OR graph [Avrahami-Zilberbrand and Kaminka,
2005], a parsing problem over grammar [Pynadath and Well-
man, 1998], a probabilistic inference task over a dynamic
Bayesian network [Bui et al., 2002] and an inverse plan-
ning problem over planning models [Baker et al., 2009;
Ramırez and Geffner, 2011]. Among those approaches, two
formulations solve the goal or plan recognition problem from
different perspectives. One focuses on constructing a suitable
library of plans or policies, while another one replaces that by
an agent action model and a set of possible goals. The advan-
tage of the latter formulation has been discussed about in [Xu
et al., 2017].

Hidden Markov models (HMMs) are widely used in prob-
abilistic goal recognition. [Bui et al., 2002] proposed an ab-
stract hidden Markov model (AHMM) to recognize an agent’s
behavior in dynamic, noisy, uncertain domains, and across
multiple levels of abstraction. Comparing to the HMM,
MDP can describe agent actions and interactions between
agents and the environment. [Baker et al., 2009] consider
the goal recognition problem over a MDP setting where ac-
tions are assumed to be stochastic and states fully observable.
[Ramırez and Geffner, 2011] extend their work to POMDP
settings where states are partially observable. In most model-
based probabilistic goal recognition research [Baker et al.,
2009; Ramırez and Geffner, 2011], posterior goal distribution
P (G|O) is usually obtained from the Bayes rule

P (G|O) = αP (O|G)P (G), (10)

where α is a normalizing constant.
Apart from the above models, recent machine learning

methods including reinforcement learning [Yue et al., 2016],
deep learning [Bisson et al., 2015] and inverse reinforce-
ment learning [Zeng et al., 2018] have already been success-
fully applied in learning the agents’ decision models for goal
recognition tasks. These efforts once again extend the usabil-
ity of model-based probabilistic goal recognition methods by
constructing agents’ behavior models from real data.

6.2 Goal Recognition Design
Goal recognition design was first introduced in [Keren et
al., 2014] to reduce goal uncertainty and advance the correct
recognition through redesigning the underlying environment.
Since then, lots of research has been carried out. [Keren
et al., 2014; 2016] extends the previous work by account-
ing for agents that behave non-optimally and non-observably.
[Wayllace et al., 2016] further allows the outcomes of agents’
actions to be non-deterministic, and proposes a Stochastic
GRD problem. Apart from the relaxation of assumptions, re-
searchers try to solve the GRD from different aspects, or use
newly established metrics. [Son et al., 2016] addresses the
same problem based on Answer Set Programming, resulting
in higher scalability and efficiency. [Mirsky et al., 2017] ex-
tends GRD to the Plan Recognition Design (PRD), which is
the task of designing a domain using plan libraries in order to
facilitate fast identification of an agent’s plan. Noticing the
inconsistency between the original wcd (worst-case distinc-
tiveness) and Stochastic GRD model, a new metric, namely
all-goals wcd (wcdag), is proposed by [Wayllace et al., 2017].

7 Conclusion
We present a new perspective to goal identification control us-
ing off-the-shelf probabilistic goal recognizer and introduce
the relative goal uncertainty (rgu) value for actions in a goal
recognition task. We present ways of controlling goal uncer-
tainty, followed by a presentation of method in an adversar-
ial setting using a Shortest-Path Largest-Uncertainty Network
Interdiction model. Empirical evaluation shows the effective-
ness of the proposed solution in controlling goal uncertainty
in recognition tasks.

Currently, as there exists inconsistency of goal uncertainty
between the offline P (G) which follows Uniform distribu-
tion and the real-time P ′(G) assessed online according to the
agent’s observations, it is still an open question as to how
to incorporate the goal uncertainty information into the goal
identification control process online.
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