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Abstract

A fundamental aspect of Beliefs-Desires-Intentions
(BDI) agents is deliberation over goals. We present
GROVE, a model of goal processing that casts de-
liberation as a choice over possible future execu-
tions of the agent’s plans that are consistent with the
agent’s beliefs. GROVE unifies existing work on
deliberation based on goal life-cycles, and makes
central the connection between changes to beliefs
and their consequences for goals. We compare
GROVE to previous approaches, and show confor-
mity to rationality postulates for an abstract model
of BDI agents, and a precise relationship to [Har-
land et al 2014] model.

1 Introduction
In a BDI agent, goals represent desirable outcomes that the
agent should achieve, which guide and motivate the behaviour
of the agent. Agents deliberate over their goals in order to de-
termine which goals they should commit to. Intentions are
goals that the agent is committed to achieving that act as a fil-
ter on the possible future courses of action the agent may take
[Cohen and Levesque, 1990; Rao and Georgeff, 1991]. The
deliberation process is informed by the agent’s beliefs, and,
as the environment evolves and the agent’s beliefs change to
reflect the evolving environment, the agent may need to re-
consider its intentions. An agent may reconsider its intentions
if it believes they are no longer possible to pursue, or if an al-
ternative set of intentions are more preferable to its current
intentions. A BDI agent should choose a set of intentions that
will best satisfy its desires (design goals) [Bratman, 1987].

In previous work, this deliberation process is represented
by a goal life-cycle, where each goal is assigned a state that
determines how it may influence the agent’s behaviour. Goals
move from one state to another depending on the results of
deliberation. For example, an active goal may be suspended
to avoid conflicts with other active goals. While there has
been significant progress toward identifying key components
of the goal life-cycle, there has been less work on integrating
the goal life-cycle with the deliberative processes that dic-
tate when transitions between states should occur, e.g., when
a goal should be suspended as a result of deliberation. For

example, Harland et al. [2014] propose an operational se-
mantics for goal life-cycles in which goals may be adopted,
dropped, aborted, suspended and resumed that unifies prior
work [Winikoff et al., 2002; van Riemsdijk et al., 2008;
Morandini et al., 2009] on goal semantics and goal types.
However, although the Harland et al. approach provides a
generic framework for operations on goals, it relies on an un-
specified deliberation function to reason about goal interac-
tions and trigger transitions between goal states.

In this paper we propose a new model of goal process-
ing, GROVE (Goals Reified Over Valid Executions), that
grounds rational behaviour in the possible execution traces
of an agent’s program. Our model has the advantages of uni-
fying many features relating to rational behaviour that have
been discussed separately in the literature, including belief
and goal interactions [Castelfranchi and Paglieri, 2007], goal
and plan conflicts [Clement and Durfee, 1999; van Riems-
dijk et al., 2009; Thangarajah et al., 2003a], goal priorities
[Vikhorev et al., 2011], and plan preferences [Visser et al.,
2016]. At the same time it provides a more precise specifica-
tion of what counts as rational goal processing.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces and defines the basic components of our
model of goal processing. In Section 3 we present our model
of goal processing in BDI agents informally, and give a for-
mal specification in Section 4. In Section 5 we show how
GROVE conforms to the rationality postulates proposed by
Grant et al. [2010], and that GROVE executions are a subset
of those generated by the goal life-cycle semantics of Har-
land et al. [2014]. Section 6 discusses related work, and we
conclude in Section 7.

2 Preliminaries
In this section, we introduce and define the basic components
that form the basis of our model of goal processing.

We assume a set P of atoms, and denote by L the set of
literals L over P : L = P ∪ {¬l | l ∈ P}. A positive literal
l ∈ L is entailed by a set of atoms P ′ ⊆ P , denoted P ′ � l,
iff l ∈ P ′, and a negative literal ¬l is entailed by P ′, denoted
P ′ � ¬l, iff l /∈ P , i.e., negation is interpreted as negation as
failure. The complement of a literal l is denoted ∼ l, and the
complement of a set of literals L, ∼L, is defined as:

∼L = {¬l | l ∈ L} ∪ {l | ¬l ∈ L}



2.1 Beliefs, Plans and Goals
The agent’s beliefs B ⊆ P represent the agent’s information
about the environment and itself. The agent’s possible goals
are denoted by D ⊆ P , where each g ∈ D represents a state
of affairs that the agent may want to bring about, and which
it has the means to achieve. A goal g is considered achieved
iff B � g.

To achieve its goals, an agent executes actions. The set of
actions available to the agent are denoted byAct. The precon-
ditions of an action e ∈ Act are a set of literals which must be
true before the execution of the action, and the postconditions
of the action are a set of literals that are expected to be true
after the execution of the action. For an action e with pre-
conditions pre(e) and postconditions pos(e), if B � pre(e)
then B � pos(e) immediately after executing e. The pre-
and postconditions of an action are assumed to be consistent,
i.e., pre(e) does not contain l,∼ l for any l (and the same for
pos(e)).

Actions are organised into plans. The set of plans available
to the agent are denoted by Π. Each plan π ∈ Π consists of
a sequence of plan steps. Each plan step is either an action
e ∈ Act or a subgoal ! g, g ∈ D. Plans are defined by the
following grammar

plan-step = e | ! g
π = plan-step+ | ε

where ε denotes the empty plan. The function plans : D 7→
2Π \ {∅} returns the (non-empty) subset of the agent’s plans
that achieve a goal. We stipulate that plans always returns
a non-empty set, i.e., for each g ∈ D the agent has at least
one plan to achieve it, and that the goal is in the set of post-
conditions for the last step in a plan to achieve it.1 We further
assume that plans are side-effect free in the sense that the plan
steps following a subgoal ! g may depend on g, but not the ef-
fects of executing a plan in plans(g), and that the goal g does
not occur as a subgoal in any plan π ∈ plans(g), or any plan
to achieve a subgoal in π, recursively. (Since goals are inter-
preted declaratively, in a well-formed agent program g should
not occur as subgoal in any means to achieve g.)

The relations between goals, plans and actions can be rep-
resented using goal plan trees (GPT) [Clement and Durfee,
1999; Thangarajah et al., 2003a; Thangarajah and Padgham,
2011].2 The root of a GPT is a top-level goal (goal-node),
and its children are the plans that can be used to achieve the
goal (plan-nodes). Usually there are several alternative plans
to achieve a goal: hence, the child plan-nodes are viewed as
‘OR’ nodes. By contrast, plan execution involves perform-
ing all the steps in the plan: hence, the children of a plan-
node are viewed as ‘AND’ nodes. As in Yao et al. [2016b;
2016], we consider goal-plan trees in which plans may con-
tain primitive actions in addition to sub-goals. Each goal g
induces a goal plan tree τ = gpt(g), where g is the root node
of the tree. A goal plan tree thus represents all possible ways
of achieving the goal g available to the agent.

1Plans in plans(g) are termed relevant plans for the triggering
condition g in the BDI literature.

2Goal-plan trees can be derived in a straightforward way from
BDI agent programs [de Silva and Padgham, 2004].

2.2 Step Sequences
A step sequence is a sequence σ = s1, s2, . . . , sn where each
step si is a pair (A, e) whereA is a set of active goalsA ⊆ D,
and e is an action e ∈ Act. The active goals for an action
e can be thought of as the ends for which the action forms
(part of) the means. Given a step si = (A, e), the function
agoals(si) returns A, the active goals of si, and the function
act(si) returns the action e.

The set of effectuated goals for a step sequence σ =
s1, . . . , sn is defined by

egoals(s1, . . . , sn) =

k⋃
i=1

agoals(si)

Concatenation for step sequences is denoted by ◦. We stip-
ulate that ε is identity for ◦, i.e., σ ◦ ε = ε ◦ σ = σ. The
prefix of a sequence σ = s1, s2, . . . , sn is a finite subse-
quence of steps s1, s2, . . . , si where i ≤ n. A suffix of a se-
quence s1, s2, . . . , si, si+1, . . . , sn is a subsequence of steps
si, si+1, . . . , sn where i ≤ n.

The projection of a step sequence σ = s1, . . . , sn with
respect to a set of atoms E, σ �E, is defined by

ε�E = ε

(A, e)�E ◦ σ = σ �E where A ∩ E 6= ∅
(A, e)�E ◦ σ = (A, e) ◦ σ �E where A ∩ E = ∅

that is, the projection of σ wrt E is the subsequence σ′ in
which all steps that have a goal in E as an active goal are
removed. Note that projection preserves the ordering of steps
in σ.

The pre- and postconditions of step sequences are denoted
by prec and post respectively:

prec(A, e) = pre(e)

prec(s1, . . . , sn) = prec(s1) ∪
n⋃
i=2

[
prec(si) \ post(s1, . . . , si−1)

]

post(A, e) = pos(e)
post(s1, . . . , , sn−1, sn) = post(s1, . . . , sn−1) ] post(sn)

where ] is a set union operator that removes negated literals
in the left-hand argument from the result if the correspond-
ing positive literal occurs in the right-hand argument, and re-
moves positive literals in the left-hand argument from the re-
sult if there are negated instances of them in the right-hand
argument:

X ] Y =
(
X \ ∼Y

)
∪ Y

Note that the precondition of a step sequence excludes pre-
conditions established by steps earlier in the sequence (and
not undone).3 On the other hand, the postconditions of a step

3These are called p-effects in [Thangarajah et al., 2003a]. How-
ever we extend their notion of p-effect to include the establishment
of the precondition of an action by a previous action in the same
plan.



sequence includes all literals that are established by actions
in the sequence.

A step sequence s1, s2, . . . , sn is coherent if no step de-
stroys the preconditions of later step(s) in the sequence, that is
at no step si there exists l ∈ post(s1, . . . , si) such that ∼ l ∈
prec(si+1, . . . , sn). A coherent step sequence s1, s2, . . . , sn
is executable given beliefs B if its preconditions are true
given B, that is if B � prec(s1, s2, . . . , sn).

2.3 Traces
A trace is a step sequence corresponding to a possible exe-
cution of a goal-plan tree for a goal. Traces are generated
by expanding the goals and plans comprising the tree recur-
sively. Expanding a plan step si in the plan π = s1, s2, . . . ,
si, . . . , sn, π ∈ plans(g), g ∈ D, where si is an action e ∈
Act , results in a pair ({g}, e). Expanding a plan step si in the
plan π = s1, s2, . . . , si−1, si, si+1, . . . , sn, π ∈ plans(g0),
g0 ∈ D where si is a subgoal ! g, results in the sequence
({g0}, s1), ({g0}, s2), . . . , ({g0}, si−1),
({g0, g}, sj), ({g0, g}, sj+1), . . . , ({g0, g}, sk),
({g0}, si+1), . . . , ({g0}, sn), where sj , sj+1, . . . , sk ∈
plans(g), g ∈ D.

The set of execution traces, traces(g), induced by the goal-
plan tree rooted at the goal g is given by:

traces(g) = traces({g}, g)

traces(A, g) = {ε} ∪
{σ | σ = expand(A ∪ {g}, s1), . . . ,

expand(A ∪ {g}, sk)

for some s1, . . . , sk ∈ plans(g)}
expand(A, e) = (A, e)

expand(A, ! g′) ∈ traces(A, g′)

We stipulate that each trace σ ∈ traces(g) is coherent. This
can be seen as as a ‘well-formedness’ condition on goal-plan
trees: the executability of a trace may depend on features of
the environment, but an action may not destroy a precondition
of a later action in the same trace.

2.4 Interleavings
An interleaving is a step sequence corresponding to a possible
execution of the goal-plan trees induced by a set of goalsG ⊆
D. The set of interleavings for a set of traces is generated
by freely interleaving the steps comprising the traces whilst
preserving the ordering of steps within the traces and their
coherence. More precisely, the set of interleavings generated
by a set of goals G = {g1, g2, . . . , gn} is given by

inters(G) = {ρ | ρ = σi || . . . ||σj ∧ {gi, . . . , gj} ⊆ G
σi ∈ traces(gi), . . . , σj ∈ traces(gj) ∧
ρ is coherent }

where || is the interleaving operator. That is, each interleav-
ing ρ ∈ inters(G) is executable in some environment (for
each ρ ∈ inters(G) there is a set of beliefs B′ ⊆ P such
that B′ � prec(ρ)). A set of goals G may have no coher-
ent interleavings. For example, achieving goals g, g′ ∈ G
may each require the consumption of some non-renewable

resource such as time, energy or money, so that it is possible
to achieve either g or g′ but not both.

In general, some interleavings will be preferred to others.
For example, interleavings that achieve higher priority goals,
or goals requiring fewer resources to achieve etc., may be
preferred. We assume a preference ordering on interleavings
specified by a relation prf (B, ρ, ρ′) which is true when the
interleaving ρ is strictly preferred to the interleaving ρ′ given
beliefs B. The prf relation incorporates all preferences over
sets of goals and the means to achieve them relevant to a par-
ticular domain.4 We assume prf is a strict partial order: a
relation that is irreflexive, asymmetric and transitive.

The set of most preferred interleavings for a set of goals G
given beliefs B, pref (B,G) is then defined as

pref (B,G) = {ρ | ρ ∈ inters(G) ∧
¬∃ρ′ ∈ inters(G) such that prf (B, ρ′, ρ)}

Note that, in general, the interleavings in pref (B,G) may
achieve different subsets of G using different plans with dif-
fering costs and execution times, however from the point of
view of the agent, they are all equivalent. For example, an
agent may consider an interleaving that achieves the (single)
goal of working in the lab, and an interleaving that achieves
the goal of going home and the goal of having dinner, equally
preferable.

A history is an interleaving containing the steps executed
by the agent so far. A history p is a subhistory of a history h if
there existsE ⊆ egoals(h) such that p = h�E. We callE the
elided goals of h and the steps in h not appearing in p elided
steps. A history p is extendable if it is a prefix of a most pre-
ferred interleaving in pref (B,G), p ◦ σ ∈ pref (B,G), and
the suffix of the interleaving, σ, is executable: B � prec(σ).
We call the suffix σ induced by an extendable history an exe-
cutable suffix.

Definition 1 (Conservative Elision). A history p is a conser-
vative elision of a history h (or simply conservative) if

1. p is extendable, i.e., for some σ, p◦σ ∈ pref (B,G) and
B � prec(σ); and

2. there is no other extendable history p′ of h that elides
strictly fewer steps of h than p, i.e., there is no E′, p′, σ′
such that E′ ⊆ egoals(h), p′ = h � E′, p′ ◦ σ′ ∈
pref (B,G), B � prec(σ′) and |p′| > |p|, where |p| is
the length of p.

The set of possible future executions of an agent with be-
liefs B, goals G and history h is the set of executable suffixes
of interleavings in pref (B,G) induced by the conservative
(sub)histories of h. More precisely,

Definition 2 (Possible Future Executions). The set of possi-
ble future executions pexecs(B,G, h) is given by:

pexecs(B,G, h) = {σ | ∃p (p is conservative and
p ◦ σ ∈ pref (B,G))}

4Although how prf is defined is not part of the formal model,
we can imagine prf being specified by an agent developer as an
input to an agent architecture that implements the GROVE model of
rationality.



The set of effectuated goals of a possible future execution
ρ ∈ pexecs(B,G, h), egoals(ρ), are the unachieved goals
of the interleaving of which ρ is a suffix, i.e., the agent has
executed one or more actions in pursuit of the goal but has
not yet achieved it, or has not yet executed any actions in
pursuit of the goal.

3 Goal Model
In this section we introduce our model of goal processing in
BDI agents. The presentation is informal, and aims to convey
the main intuitions. A more formal treatment is deferred to
Section 4.

At any point in time, a BDI agent has a set of goalsG ⊆ D,
a set of beliefs B ⊆ P , and a history of the steps executed so
far in pursuit of its goals, h. We refer to I and h together as
the agent’s plan state. An agent is rational if it commits to
an interleaving in I = pexecs(B,G, h). If the environment
is static,5 then executing an interleaving in I is guaranteed
to succeed (recall that actions are assumed to always bring
about their postconditions) and result in a most preferred out-
come. If the environment is dynamic and the agent has no
knowledge of how the environment is likely to change, it can
do no better than committing to an interleaving that is most
preferred in the current environment. Note that, in GROVE,
unless I = pexecs(B,G, h) is a singleton, there is not nec-
essarily any single set of goals to which the agent is commit-
ted, if the (top-level) goals achieved by one interleaving ρ ∈
I ,egoals(ρ)∩G, differs from the goals achieved by a different
interleaving ρ′ ∈ I , i.e., if egoals(ρ) ∩ G 6= egoals(ρ′) ∩ G,
ρ, ρ′ ∈ I, ρ 6= ρ′. Rather, the agent commits to top-level
goals and subgoals as execution proceeds. In this, our model
differs fundamentally from approaches that posit a clear com-
mitment to top-level goals and a lower level of commitment
to subgoals.

In the remainder of this section, we describe how the ex-
ecution of an agent achieves behaviour that is rational, and
how it maintains such behaviour when its goals or the envi-
ronment change. The execution model has some similarities
with the execution or deliberation cycle found in many BDI
architectures, however there are important differences.

Execution is cyclic. At each cycle, the agent updates its
beliefs B to reflect the current state of the environment; up-
dates its goals G to be consistent with its beliefs and to
incorporate any changes in its goals requested by users or
other agents; computes a set of most preferred interleavings
I = pexecs(B,G, h); and finally executes the next action
from an interleaving in I and updates the history h. Below,
we explain each of these steps in more detail.

Updating Beliefs
At each cycle, the agent senses the environment, and uses this
sensory information to update its belief state. The agent’s
belief update is modelled as a function, sense(B), that takes
the agent’s current beliefs B as an argument, and returns an
updated set of beliefs B′ reflecting the environment state at

5That is, the environment state changes only as a result of the
agent’s actions.

this cycle
B′ = sense(B)

We stipulate that the set of beliefs B′ returned by sense is
consistent.

Updating Goals
The agent’s goals change when goals are achieved, and in
response to requests from users or other agents to adopt or
drop a goal. A goal may be achieved by the postcondition
of the final step in a trace for the goal, ‘inadvertently’ by
the postconditions of a step in a trace for a different goal,
or ‘serendipitously’ by a spontaneous change in the state of
the environment. (Goals may also be dropped when the plan
to achieve a goal fails; we do not consider this case here.)

Requests to adopt or drop goals are modelled by a function,
mesg(G), that takes the current goals G as an argument and
returns the set of goals to be adopted,G+, and the set of goals
to be dropped, G−:

(G+, G−) = mesg(G)

We stipulate that G− ⊆ G and G+ ⊆ D, G+ ∩G− = G+ ∩
G = ∅. The agent’s updated goals for this cycle, G′, are then
given by

G′ = ((G ∪G+) \G−) \B′

Updating Plan State
When the belief and goal states have been updated, the
possible future executions, I ′ = pexecs(B′, G′, h), are
(re)computed. When an agent adopts one or more new goals
giving a new set of goals G ⊆ G′, interleavings in the new
set of possible future executions I ′ may or may not achieve
the new goals in G′ \ G or the old goals in G, depending
on the agent’s preference relation prf . For example, one
or more of the new goals in G+ may not be jointly achiev-
able with goals in G, and the agent may prefer interleavings
that achieve goals in G. Conversely, the newly adopted goals
G′\Gmay be of high priority, and not jointly achievable with
goals inG. Similarly, when the agent drops one or more goals
giving a new set of goals G′ ⊆ G, the goals achieved by the
interleavings in I ′, may or may not be a subset of the goals
achieved by the interleavings in I . For example, if a high
priority goal that is not jointly achievable with other goals is
dropped, the agent may be able to pursue a larger number of
goals.

If the agent has achieved or dropped one or more goals at
the current cycle, a new conservative elision of h is computed
and used to determine the set of executable suffixes of inter-
leavings in pref (B′, G′) by removing steps in h to achieve
goals E such that ρ = h �E ◦ σ, ρ ∈ pexecs(B′, G′, h) and
there is no E′, ρ′ = p �E′ ◦ σ′, ρ′ ∈ pexecs(B′, G′, h) such
that |h �E′| > |h �E|. It is irrational for an agent to repeat
steps already performed if these steps also occur in a pre-
fix of an interleaving in pexecs(B′, G′, h). Moreover, some
steps may not be repeatable, e.g., if a step has consumed a
non-renewable resource.6 We therefore require that the agent
removes the minimum number of steps from h so that h �E

6Recall that a possible future execution must be executable in
the current environment, so steps elided from h cannot make σ non-
executable.



becomes a prefix of an interleaving in pexecs(B′, G′, h). In
the worst case,E = egoals(p) and h�E = ε; in the best case,
e.g., when the set of goals has not changed or when a goal is
dropped that the agent was not actively pursuing, h �E = h,
and h is a prefix of all interleavings in pexecs(B′, G′, h).

As execution progresses and the history h increases in
length, the cardinality of pexecs(B,G, h) will typically de-
crease. This reflects the fact that, as the agent executes steps,
it furthers its commitments to a particular course of action
(which may include committing to top-level goals in G).

Action Execution
At each cycle, the agent selects an interleaving ρ ∈ I ′ =
pexecs(B,G, h) and executes the first action in ρ. That is,
the agent selects an interleaving that is consistent with the
actions it has executed so far and executes the next action
after the conservative elision of h from the interleaving. The
action executed is then added to the history to give a new
history h′ = h ◦ e, where ρ = e ◦ ρ′.

4 Semantics
An agent configuration is a 4-tuple 〈B,G, h, f〉 where B is a
set of beliefs, G is a set of top-level goals, h is a history and
f is a phase flag as explained below. We stipulate that in the
initial configuration, B ∩G = ∅.

We model the evolution of the agent configuration and en-
vironment with an execution cycle. Each execution cycle is
made up of linearly executed phases, starting with the belief
update phase and ending in the execution phase. The current
phase is represented in the configuration by a phase flag from
the set {s,m, a}. In the belief update (s) phase the agent’s be-
liefs are updated to reflect changes resulting from the agent’s
most recently executed action and changes that have hap-
pened independently of the agent. In the goal update (m)
phase, the agent’s goals are updated in response to requests
from users or other agents to adopt or drop goals, when goals
are achieved, and when they become unachievable. The goal
update phase is followed by the execution (a) phase, in which
the set of most preferred interleavings and their possible fu-
ture executions are (re)computed, the first step of a possible
future execution is executed, and the history of executed ac-
tions is extended with the executed step.

Belief update phase

B′ = sense(B)

〈B,G, h, s〉 → 〈B′, G, h,m〉
(1)

Rule (1): update the belief set B and move to the goal
update phase.

Goal update phase

(G+, G−) = mesg(G) G′ = ((G ∪G+) \G−) \B
〈B,G, h,m〉 → 〈B,G′, h, a〉

(2)

Rule (2): update the goal setGwith the goals to be adopted
G+ and dropped G− at this cycle, drop any achieved goals,
and move to the execution phase.

Execution phase

ρ ∈ pexecs(B,G, h) ρ = (A, e) ◦ σ
〈B,G, h, a〉 → 〈B,G, h ◦ e, s〉

(3)

Rule (3): select a possible future execution ρ, execute the
first action e in ρ, and extend the history of executed actions
with e. Move to the sense phase.

pexecs(B,G, h) = ∅
〈B,G, h, a〉 → 〈B,G, h, s〉

(4)

Rule (4): if there are no possible future executions, move
to the sense phase.

Note that, in contrast to other approaches, we do not drop
unachievable top-level goals. Rather we hope that the en-
vironment evolves in such a way to enable achievement of
currently unachievable top-level goals.

5 Discussion
In this section, we consider two leading approaches to spec-
ifying rational behaviour from the BDI literature. We show
that GROVE conforms to the rationality postulates proposed
by Grant et al. [2010], and that GROVE executions are a sub-
set of those generated by the goal life-cycle semantics of Har-
land et al. [2014] (i.e., GROVE agents are ‘more rational’
than than agents conforming to the Harland et al. model).

5.1 Rationality Postulates for Revising BDI
Structures

In [Grant et al., 2010], a high-level model of a mental state of
BDI agents is proposed, called a BDI structure. A BDI struc-
ture S is a tuple 〈B,D, I, v, (c, C)〉, where B is a set of be-
liefs (all consequences of a finite belief baseB0),D is a set of
declarative goals (in the same language as beliefs), I is a set
of intentions (pairs (action, goal)), with functions goals(I)
and actions(I) returning respectively the set of goals occur-
ring in I and the set of actions occurring in I , v is a function
from sets of goals to non-negative real numbers returning the
value of a set of goals to the agent if it is achieved (satisfying
the condition that a superset has at least the same value as its
subset) and C ⊇ actions(I), and c is a function from subsets
of C to non-negative real numbers (cost of executing this set
of actions). c also satisfies the condition that a superset of
a set of actions costs at least as much. The postulates on a
rational BDI structure are:

A1 B is consistent, i.e., B 6` ⊥
A2 I is feasible in the context of B (for every (α, θ) ∈ I ,

B ` rα,θ, where rα,θ says that α’s preconditions are
true, and α terminates and makes θ true)

A3 goals(I) is consistent

A4 For every θ ∈ goals(I), B 6` θ
A5 There is no I ′ such that S′ = 〈B,D, I ′, v, (c, C)〉 sat-

isfies A1 - A4 and ben(I ′) > ben(I), where ben(I) =
v(goals(I)) − c(actions(I)), in other words, there is
no other set of intentions the agent can select which
achieves more valuable goals by cheaper means.



Structures satisfying A1 - A4 are referred to in [Grant et
al., 2010] as weakly rational BDI structures (WRBDI) and
structures satisfying A1 - A5 as rational BDI structures
(RBDI). There are several complexity results stated concern-
ing WRBDI and RBDI structures, but no algorithms given
for revising the structures in a rational way. Our work can be
seen as a step towards providing a computationally grounded
approach to this problem.

Theorem 1. GROVE is weakly rational in the sense of [Grant
et al., 2010], i.e., satisfies postulates A1 - A4.

Proof. A1 holds because beliefs are atomic, A2 holds be-
cause all actions in a possible future execution are executable
(from Definition 2) and guaranteed to achieve the goal if ex-
ecuted (since we require that a goal must be in the set of
postconditions for the last step in a plan to achieve it). A3
holds because the effectuated goals of a possible future ex-
ecution are consistent (from the coherence of interleavings).
A4 holds because achieved goals are dropped (Rule (2) for
top-level goals, and as a consequence of Definition 1 for sub-
goals).

GROVE does not assume that a numerical value can be
assigned to each set of goals or a cost to each set of actions;
however, if this is possible, then these values can be used to
derive a preference order on interleavings that chooses the
optimal set of interleavings for execution.

5.2 HMTY Goal Life-Cycle Semantics
In [Harland et al., 2014], an operational semantics for the life-
cycles of goals is presented, that aims to unify the prior work
on establishing goal semantics [van Riemsdijk et al., 2008;
Morandini et al., 2009]. In this section, we give a high-level
overview of the approach of the Harland et al. [2014] ap-
proach (hereinafter HMTY), and show that, while all GROVE
executions are consistent with the HMTY operational seman-
tics, some HMTY executions are not rational in the sense of
GROVE (and we would argue, are not rational). HMTY con-
sider both achievement and maintenance goals. As GROVE
currently does not encompass maintenance goals, we focus
on achievement goals here.

A configuration in HMTY is a tuple 〈B,G〉 where B is
a set of beliefs and G is a set of goal contexts of the form
〈I, ach(κ, S, F ), Rules, State, π〉, where I is a goal context
identifier, κ is a goal context condition, S is a success con-
dition, F is a failure condition, Rules is a set of condition-
action pairs for goal update, State is a state flag, and π is a
plan body.

Goals in the Pending state have no plan associated with
them, and are not currently being executed. A Pending goal
may be activated as a consequence of deliberation provided
that the context condition κ is true.

Goals in the Active state must have a plan body associated
with them, and are considered executable.

If either of a goal’s success condition S or failure condition
F are true, the goal is dropped. As each condition-action pair
is triggered by the state of the beliefs, state transitions are
triggered by changes to beliefs.

An unspecified deliberation process is assumed to add be-
liefs to the belief base which trigger state transitions for goals.

Plans are assigned to goals in the Active state by way of
a means-end reasoning function, which allows for both pre-
written plans and online generation of plans.

Next we prove a form of equivalence between the GROVE
and HMTY models. We argue that, under certain background
assumptions, all executions of a GROVE agent are valid ex-
ecutions in HMTY. (The converse is not the case; GROVE
imposes more constraints on rational executions, for exam-
ple it only adopts executable interleavings.) The background
assumptions are as follows. In the interests of brevity, we as-
sume that the environment is static, known (beliefs are com-
plete), that actions are infallible and have no duration. In
addition, we consider only achievement goals.

Theorem 2. Let the environment be static and actions infal-
lible. Then for any GROVE agent with initial configuration
〈B,G, ε, s〉 and an execution history h′, there is an HMTY
agent with the same goals and plans which produces the same
execution history.

Proof. The idea of the proof is as follows. Given a GROVE
agent with the initial configuration 〈B,G, ε, s〉, and an execu-
tion history h′ starting from this configuration, we define an
HMTY agent with a ‘matching’ initial configuration 〈B,G〉
which will produce the same execution h′. We first define
‘matching’ precisely, and then show that if two configura-
tions are matching, then if an execution step is possible in the
GROVE configuration, then the same step is possible in the
HMTY configuration, and the resulting configurations (pos-
sibly after some number of internal transitions) are matching.

Consider a GROVE configuration 〈B,G, ε, a〉 (reached by
internal transitions from 〈B,G, ε, s〉) and a history h′ which
is generated from this initial configuration. Since we are
assuming that the environment is static and actions are in-
fallible, then without loss of generality we can assume that
the agent is executing a single interleaving σ0 such that
pexecs(B,G, ε) = {σ0}. (In fact, it is sufficient to assume
that we can identify σ0 which the agent is executing to gener-
ate h′, as an element of pexecs(B,G, ε).)

For the sake of simplifying the proof, we assume that
expand is implemented so that the effectuated goal set and
action in each step are annotated with plans and goals respec-
tively (this information can clearly be added when an inter-
leaving is generated). In particular, for each step (A, e), each
effectuated goal a ∈ A is annotated with a plan πa which
corresponds to the plan that was selected to achieve a in the
expansion of the goal-plan tree; the action e is annotated with
the goal ge that it achieves. We denote an annotated goal by
g:πg and an annotated action by e:ge.

The matching initial HMTY configuration is 〈B,G〉
where B = B, and G contains tuples of the form
〈I, ach(>, g,⊥), Rules, Pending, ε〉 for each g ∈ G. The
Rules are the ‘standard’ HMTY rules for adopting and drop-
ping goals; we assume that they allow making each of the
goals in G Active and associating a plan π with it.

The annotations of steps in σ0 are used to determine what
should happen in the HMTY agent. When its goals are acti-
vated and plans are assigned to them, then the annotations on



A inform the choice of plan for the goal. That is, for a goal g
that is being activated, mer = πg where g:πg ∈ A.

Subgoal steps that are executed are replaced by SGP , ac-
cording to the HMTY semantics. The subgoal step !g′ is re-
placed by g′ ∨ drop(I ′) :?S for the subgoal g′ with id I ′ in
G. A plan with SGP at the head cannot be progressed un-
til its subgoal g′ has been dropped (by deliberation fact) or
achieved.

For an arbitrary GROVE configuration 〈B,G, h, a〉 with a
history h which is a prefix of h′, where the first |h| steps of
σ0 are executed and pexecs(B,G, h) = {σh}, the match-
ing HMTY configuration intuitively corresponds to remov-
ing the actions in h from the plans for goals and subgoals
adopted so far. More precisely, it is a configuration 〈B,G〉
where B = B ∪DF (where DF are deliberation facts of the
form activate(I) that are added in HMTY in order to activate
goals), and G contains tuples corresponding to (g, π) where
g ∈ G or g is a subgoal of some plan for g′ ∈ G and π is
a suffix of a plan for g where the prefix of the plan is a sub-
sequence of h.

In order to show that at any point in the history h′, the
HMTY agent can execute the same action as the one executed
by the GROVE agent, we need to show that in the matching
configurations, the action in the first element of σh is exe-
cutable by the HMTY agent, and the resulting configurations
again match. In the initial situation the action e:ge in the first
element of σ0 is the first action of a plan e◦π for some ge ∈ G.
It can be executed by the HMTY agent by assumption, since
there is a goal 〈I, ach(>, g,⊥), Rules, Pending, ε〉 in the
HMTY configuration, which can be activated and assigned a
plan e ◦ π to become 〈I, ach(>, g,⊥), Rules,Active, e ◦ π〉.

For the inductive step, we need to consider two cases
for the action e:ge in the first element (A, e:ge) in σh.
The first case is when e belongs to a plan for ge ∈
G, which is as before. The second case is when e
is the first action in a remaining plan for a subgoal ge.
Since by definition of a matching configuration there is
a goal of the form 〈I, ach(>, ge,⊥), Rules,Active, e ◦ π〉
in the HMTY configuration, it can be chosen for exe-
cution and in the resulting configuration, there is a goal
〈I, ach(>, ge,⊥), Rules,Active, π〉, so the HMTY config-
uration again matches the GROVE configuration correspond-
ing to σh◦e.

By showing that GROVE executions are a subset of those
in HMTY, we reveal that there are some executions permitted
by HMTY that are not permitted by GROVE. These execu-
tions are those that correspond to irrational behaviour permit-
ted by HMTY.

6 Related Work
In this section, we discuss previous approaches to handling
interactions between goals and goal dynamics that are most
closely related to GROVE.

Castelfranchi & Paglieri [Castelfranchi and Paglieri, 2007]
describe a model of goal processing in which goals are on
a scale between desire and intention, and desire and inten-
tion are both expressed in terms of (states of) goals. Goals

progress from desire to intention and are “filtered” by be-
liefs that characterise the support required to progress to the
next stage. As in GROVE, beliefs filter the future executions
which in turn dictate the degree to which goals are intended.

There has been considerable work on goal dynamics,
goal lifecycles, and rational commitment. Van Riemsdijk
et al. [van Riemsdijk et al., 2008] define two goal types:
achievement and performative, and an give an abstract archi-
tecture for goals. Once adopted, goals may move between
suspended and activated states, until they are finally dropped.
In the suspended state, a goal is simply inactive, while in the
activated state, a plan is is assigned to the goal and the plan
is executed. Morandini et al. [Morandini et al., 2009] extend
the semantics for goals given by Riemsdijk et al. [van Riems-
dijk et al., 2008] to define an operational semantics for the
behaviour of leaf and non-leaf goals in goal models.

As discussed in Section 5.2, Harland et al. [2014] give
an operational semantics for a goal lifecycle model that en-
compasses the behaviour of goals of monitoring and goals of
accomplishment. Their semantics includes states and transi-
tions for aborting, suspending and resuming goals, handling
the execution of plans, and subgoaling. Their work unifies
the existing semantics for goals of monitoring and accom-
plishment [van Riemsdijk et al., 2008; Morandini et al., 2009;
Duff et al., 2006] with the authors’ previous work on abort-
ing, resuming and suspending goals [Thangarajah et al.,
2007; Thangarajah et al., 2008; Thangarajah and Padgham,
2011]. In [Harland et al., 2014] decisions about which tran-
sitions to perform and when are made by a deliberation func-
tion. The deliberation function is assumed to be consistent
with the HMTY operational semantics, but is not further
specified. We address this issue in GROVE by defining ratio-
nal deliberation in terms of preferences over possible future
executions.

In [Harland et al., 2017] Harland et al. develop a generic
BDI-based execution model for handling the aborting, sus-
pending, and resuming goals and (potentially parallel) sub-
goals, offering finer control over the agent’s tasks and sub-
tasks in the presence of these operations. The semantics they
give ensure that all sub-tasks are aborted before the task is
aborted, and similarly that sub-tasks are suspended before
suspension of the parent task. The authors distinguish be-
tween cases in which aborting a plan or goal imply failure,
and cases in which aborting is possible without leading to fail-
ure of the plan or goal. For instance, they note that aborting a
plan’s subgoals necessarily causes it to fail, however aborting
that plan is not necessarily indicative of failure. The authors
also note the desirability of storing resumption conditions for
suspended tasks, especially in the case that a task has been
suspended in order to avoid conflicts. We address the issue of
managing the suspension and resumption of goals and plans
in our model using interleavings.

A parallel strand of work in the Goal Reasoning literature
casts reasoning about goals (and ultimately goal semantics,
including a goal life-cycle model) as goal refinement, an ex-
tension of the notion of plan refinement [Roberts et al., 2014;
Roberts et al., 2015]. Goals are transitioned between modes
(which are analogous to state flags) by application of refine-
ment strategies. The refinements that can be applied to a



goal are subject to a set of constraints on that goal; for exam-
ple, a plan selected to achieve a goal must satisfy its formu-
lated constraints. If a goal’s constraints are violated while it
is executing, a resolution strategy is applied that determines
whether the goal can be recovered and does so if possible.
Each mode in the lifecycle represents a decision to be made
in the deliberative process, from the formulated goal about
which little has been decided, through to the dispatched goal
which has a plan being executed for it. In [Roberts et al.,
2015], the authors integrate their goal lifecycle model with
an existing model of online planning and execution.

In [Johnson et al., 2016], the goal reasoning lifecycle
model is extended with information measures that specify
domain-specific information about the current and expected
progress of goals and plans, and which enables prediction of
failure i.e., due to constraints not being satisfied.

The goal reasoning lifecycle models are similar to GROVE
in that they provide a framework for reasoning about the de-
liberation process by which an agent selects a set of goals to
achieve. However, they frame a solution to the goal reasoning
problem at the individual goal level, and it is unclear how in-
teractions between goals are managed. The hard constraints
in the goal reasoning lifecycle model constrain the options the
agent can consider, for instance the plans that may be selected
to achieve a goal. The notion of executability in GROVE is
analogous to a hard constraint, as inexecutability (a violation
of the constraint) corresponds to failure.

There has been considerable work on reasoning about con-
flicts [Clement and Durfee, 1999; Thangarajah et al., 2003a;
Pokahr et al., 2005; van Riemsdijk et al., 2009; Zatelli et
al., 2016; Yao et al., 2016a] and synergies [Thangarajah et
al., 2003b; Yao et al., 2016b] between goals. For exam-
ple, Thangarajah et al. [2003a] describe an approach based
on summary information that avoids conflicts by reasoning
about necessary and possible pre- and post-conditions of dif-
ferent ways of achieving a goal. They also present mecha-
nisms to determine whether a newly adopted (sub)goal will
definitely be safe to execute without conflicts, or will def-
initely result in conflicts, or may result in conflicts. If the
goal cannot be executed safely, execution of the intention is
deferred. Yao et al. [2016a] present a stochastic approach
based on Single-Player Monte-Carlo Tree Search (SP-MCTS)
in which pseudorandom simulations of different interleavings
of the plans in each intention are used to determine which in-
tention to progress. Zatelli et al. [2016] consider the detection
and avoidance of conflicts between goals. Their solution re-
lies on developer-specified annotations for plans in order to
determine when there is a conflict. This is in contrast to our
approach where conflicts are detected using condition sets de-
rived from traces through goal-plan trees, as in [Clement and
Durfee, 1999; Thangarajah et al., 2003a; Yao et al., 2016a;
Yao et al., 2016b] Our approach does not require that the
developer foresee conflicting executions of their plans, and
instead leaves the task of detecting conflicts to the agent.

There has also been work on the use of preferences to in-
form the choice of which goals to commit to and what means
should be used to achieve them. For example, Visser et al.
[2016] develop an approach in which goal-plan trees are an-
notated with preference information from which summaries

are derived and further refined by user input. We have made
the notion of preference central to our model as a means to
define a rational choice over interleavings, however the pref-
erence function itself is abstract.

7 Conclusions
We present GROVE, a model of goal processing that casts
deliberation as a choice over possible future executions of
the agent’s plans that are consistent with the agent’s be-
liefs. GROVE unifies existing work on deliberation based on
goal life-cycles, and makes central the connection between
changes to beliefs and their consequences for goals. We
showed that GROVE conforms to the rationality postulates
for BDI agents given by Grant et al. [2010] the the opera-
tional semantics for goal life-cycles given by Harland et al.
[2014].

We have focussed on perfect rationality in this paper. One
direction for future work would be to consider approxima-
tions to perfect rationality or bounded rationality, by bound-
ing the lookahead of possible future executions. Other av-
enues for future work include incorporating from [Harland et
al., 2014] that GROVE lacks, such as support for abort meth-
ods and maintenance goals.
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