
Advances in Cognitive Systems X (2019) 1-6 Submitted X/2019; published X/2019

Explanation-based Goal Monitors for Autonomous Agents

Zohreh Dannenhauer ZOHREH.DANNENHAUER@KNEXUSRESEARCH.COM

Matthew Molineaux MATTHEW.MOLINEAUX@WRIGHT.EDU

Michael Cox MICHAEL.COX@WRIGHT.EDU

Wright State Research Institue, Dayton, OH USA

Abstract
Goal reasoning agents operating in dynamic, partially observable worlds select between compet-
ing objectives which change over time. In this paper, we introduce goal monitors that interleave
plan execution, planning and interpretation. These monitors assume that the goal is formulated in
response to a inconsistency between the agent’s expectations and its observations. We use Discov-
erHistory to generate explanations to find possible events that caused these anomalies. In response
to the anomalies, new goals are formulated to remove the cause of each anomaly as identified by
the explanations. We introduce goal monitors as a way to determine when an agent should switch
between its current goal and pending goals. Goal monitors link the causal information of the expla-
nations to both (1) the newly generated goals and (2) monitoring capabilities for identifying if the
goals remain relevant. We describe the process of creating goal monitors in the MIDCA cognitive
architecture and explain how they lead to goal change among competing goals when anomalies
arise. Finally, we demonstrate our system in the Minecraft domain.

1. Introduction

Real world autonomous agents will be expected to manage their behavior across many complex
situations and to solve severe problems that arise while pursuing their goals. This work considers
agents that are operating in partially observable worlds which are changing due to external events.
Events are not always observable to agents and may cause them to fail in achieving their goals and
plans. Agents should be able to explain the cause of these changes and adjust their goals and plans to
perform competently. Specifically, this work addresses the research problem of how best to monitor
the world for those changes that affect the agent’s goals.

This paper focuses on goal-driven autonomous (GDA) agents [Aha et al., 2010; Cox, 2007;
Klenk et al., 2013; Munoz-Avila et al., 2010]. Goal-driven autonomy involves recognizing unex-
pected or possibly new problems, explaining the causal factors underlying the problems and gener-
ating goals to remove the cause of the problems in order to achieve the given task. The GDA agent
itself is expected to identify situations in which new goals are to be formulated or current goals
changed and abandoned [Cox et al., 2017; Klenk et al., 2013]. Identification of these situations is
where plan monitors and goal monitors are needed.

Plan monitors can enable a planner to respond to changes in the world during plan generation
without having to restart planning from the beginning. However, there are some changes that affect

c© 2019 Cognitive Systems Foundation. All rights reserved.

Z. DANNENHAUER, M. MOLINEAUX, AND M. COX

the agent’s goals which are outside the scope of plan monitors, especially when the agent should
consider switching to a pending goal. Hence the need for goal monitors which is the focus of this
paper.

If the agent formulates a goal on its own, it should have reasons for doing so. These reasons
establish the means for monitoring that the goal is still worth achieving. Explanation-based goal
monitors are created from an explanation used to formulate that goal in response to a inconsistency
between the agent’s expectations and observations.

DiscoverHistory [Molineaux et al., 2012] is a system that abductively reasons about unexpected
events that occur during plan execution. When there are discrepancies between an agent’s predic-
tions and observations, DiscoverHistory hypothesizes events consistent with the observations that
resolve the inconsistency.

Consider the following example in the Minecraft domain. While working, Steve’s (our Minecraft
agent) health decreases, and Steve finds this anomalous because he is expecting good health (a
health-value ≥ 30). Instead he observes a lower health value. Low health is the consequence of
some event that has occurred. The agent does not have full knowledge of his surroundings, but he
explains this inconsistency by hypothesizing that he was shot by an archer skeleton or activated an
arrow trap.

In this paper, we use an explanation of an anomaly to extract the reasons why the agent pursues
a goal and generates monitors to observe these reasons. This approach provides the basis to change
the goal when the goal is no longer useful in the world. Our contributions are the following:

• A goal monitoring approach that extracts possible reasons why the agent pursues a goal from
explanations of a inconsistency and performs monitoring of these reasons to ensure the goal
is still useful.

• An algorithm that creates explanation-based goal monitors to observe the causal structures of
a formulated goal and change/drop the goal during the execution if the agent’s beliefs change.

• An evaluation of an agent with explanation-based goal monitors in the Minecraft domain that
outperforms a baseline agent without explanation-based goal monitors.

This paper is organized as follows: In the next section we review the MIDCA cognitive archi-
tecture and DiscoverHistory. The following section introduces the concepts, formalism and imple-
mentation of explanation-based goal monitors. We then present an ablation study demonstrating
the benefits of an agent equipped with explanation-based goal monitors compared to a GDA agent
without goal monitors. We follow with results and conclude with a discussion of future work.

2. Definitions and Formalism

We use the standard definitions from classical planning for predicates, atoms, planning operators
and actions [Ghallab et al., 2016]. A planning environment is partially observable if an agent only
has access to the environment through observations which do not cover the complete state.

An event template is defined the same as a classical planning operator: e=(name(e), precond(e),
effects(e)) where name is the name of the event, preconds and effects are the preconditions and

2

EXPLANATION-BASED GOAL MONITORS FOR AUTONOMOUS AGENTS

effects of the event respectively. An event occurs when all of its preconditions are met in the true
world state. Since actions and events change the current state of the world, events can be triggered
at any time.

Occurrence o refers to the occurrence of any observation obs, action a, or event e. An execution
history is a finite sequence of observations and actions 〈obs0, a1, obs1, a2, ..., ak, obsk+1〉.

If the agent’s expectations for the outcome of its actions are different from the actual observed
outcomes in each new state, we say a inconsistency occurs [Dannenhauer and Munoz-Avila, 2015].
An inconsistency is a tuple (p, o, o′), where p is a predicate in the new observation o′. p ∈ obs but
p is not an effect of the previous occurrence o since o is an action a and ¬p ∈ effects(a).

One way to resolve the inconsistency is to show that some occurrence changed the value of
a literal in between the preceding occurrence o and the following occurrence o′. This occurrence
must be an event e, such that effects(e) |= p. Another way to resolve the inconsistency is hypoth-
esizing an initial value. In this case, a different initial occurrence o may be hypothesized. We use
DiscoverHistory to generate these hypotheses.

We adopt the classical planning formalism [Ghallab et al., 2004] where any given goal, gi ⊆
s ∈ S, is a state or subset of a state that an agent tries to achieve. The agent’s goal agenda Ĝ =
{g1, ..., gc, ..., gn} contains the current goal gc and any pending goals it intends to pursue.

We formalize goal monitors as a goal operation [Cox et al., 2017]. An individual goal operation,
δ : G → G, is a function from one goal expression g ∈ G ⊂ S to another g′ ∈ G ⊂ S, where S
is the set of all possible states. An operation is formalized as a transformation represented by δ =
(head(δ), parameter(δ), pre(δ), res(δ)), where pre(δ) and res(δ) are its preconditions and result. The
decisions 〈δ1, δ2, ..., δn〉 applied in sequence to arrive at g′ by δn(...δ2(δ1(gc))) = g′.

Table 1 represents the goal monitor operation as a goal transformation, δmo. The content of the
goal does not change in this operation, rather the is-monitored attribute changes. This flag on the
goal signals to an implementation that a monitor needs to be created. The monitor includes two
major components. First the monitor encapsulates environmental conditions whose change signals
the need for goal reconsideration. Second the monitor includes a specification of the response (e.g.,
goal abandonment) if the perception component detects the first condition.

In Table 1, the class hierarchy CL is used to represent a hierarchy of goal predicates r. The
monitor operation, like all goal operations, has 4 parts: a name (i.e., head), a parameter (i.e., the
input goal), a set of preconditions (here 3 of them), and a result (i.e., res). The hierarchy notation is
more important for other operations such as goal change, where the goal may change from r to its
immediate parent r, but in monitoring the preconditions assure that the goal predicate is not already
monitored, and it results in one that is monitored.

3. Review of the MIDCA Architecture

The metacognitive integrated dual-cycle architecture (MIDCA) [Cox et al., 2016; Paisner et al.,
2013] is a cognitive architecture that models both cognition and metacognition for intelligent agents.
It consists of “action-perception” cycles at both the cognitive level and the metacognitive level (see
Figure 1). In general, a cycle performs problem-solving to achieve its goals and tries to comprehend
the resulting actions and those of other agents. The problem-solving mechanism of each cycle con-

3

Z. DANNENHAUER, M. MOLINEAUX, AND M. COX

Table 1. The goal monitor operation as transformation. In the notation of [Bergmann, 2002], CL is a class hi-
erarchy having leaves Lc ⊂ CL and whose root classC has superclass>, i.e., Csuperclass = >. Precondition
pre2 of the transformation assures that the goal is not already monitored.
δmo(gc : G) : G
head(δmo)= monitor
parameter(δmo)=gc=r(obj1, obj2)
pre1(δmo)=obj1∈ Objs ∧ obj2 ∈ Objs
pre2(δmo) = ∃r, r′, i|r ∈ CL ∧ r′ ∈ CL∧ rsuperclass =
r′ ∧ r = (rname, r

′, (r.A1, r.A2, ..., r.Am)) ∧ 1 ≥ i ≥ m
∧Ai=is-monitored ∧¬r.Ai

pre3(δmo)=needs-monitoring(s, gc)
pre(δmo) = {pre1(δmo), pre2(δ

mo), pre3(δ
mo)}

res(δmo) = if ∀x|x ∈ pre(δmo) ∧ (s |= x) then
p.is-monitored← >
return gc

sists of intention, planning, and action execution processes, whereas the comprehension mechanism
consists of perception, interpretation, and goal evaluation.

In problem solving, the Intend phase commits to a current goal from those available. The Plan
phase then generates a sequence of actions. The plan is executed by the Act phase to change the
world through the effects of the planned actions. The agent will then use these expectations in the
next cycle to evaluate the execution of the plan.

Comprehension starts with perception of the world. The Interpret phase takes the resulting
predicates and the expectations in memory as input. The Evaluate phase determines whether the
current goal is actually achieved in the world and removes it from memory if true.

The Interpret phase of MIDCA compares expectations from its plans and knowledge about
the world to perceived observations. Discrepancies detected by these comparisons enable MIDCA
to generate new goals and to change existing goals in a robust manner. The Interpret phase is
implemented as a GDA procedure and analyzes the current state to determine which new goals
should be pursued. In our scenario, this is the phase that detects an anomaly, forms explanation and
formulates new goals in response.

DiscoverHistory is integrated with the Interpret phase in MIDCA to reason about the causes of
inconsistencies between observations and expectations that arise during plan execution and generate
abductive explanations. Interpret passes the execution history to DiscoverHistory, and DiscoverHis-
tory generates successive explanations by attempting to resolve inconsistencies.

This is often useful to derive a causal structure for why the agent’s plan fails. These structures
provide the environmental conditions that must persist for the agent’s goals to remain valid. Goal
monitors that are created in the Interpret phase observe these conditions and provide the response
if they change. In this paper, we examine what information these monitors observe, and how these
monitors respond when they detect changes in these causal structures.

4

EXPLANATION-BASED GOAL MONITORS FOR AUTONOMOUS AGENTS

Figure 1. The action-perception cycle in MIDCA. Together Intend, Plan, and Act compose the problem-
solving mechanism in the architecture, and Perceive, Interpret, and Evaluation constitute the comprehension
mechanism. Explanations are embedded in Interpret. Hypotheses are the explanations that are generated in
Interpret.

4. Goal Monitoring

In MIDCA, goals provide focus for the agent’s reasoning and represent the desired future state
that the agent seeks to achieve. We categorize goal monitors into two types based on how the
goal is formulated: operator-based and explanation-based. Operator-based goal monitors [Cox
and Dannenhauer, 2017] consist of a set of goal operators as rules that generate goals when their
conditions are satisfied in the world. Formally, a goal operator o, is the tuple (name(o), precond(o),
result(o)). The set of literals precond(o) represents the operator’s preconditions. They specify what
conditions the current state must satisfy in order for o to be applied. Operators exist for various goal
types and data-driven context-sensitive rules spawn them given matching run-time observations.
Goal monitors observe these conditions to make sure the goal is still valid in the new state. While
previous work considered on operator-based goal monitors in a logistics domain setting, this is the
first work (of which the authors are aware) on explanation-based goal monitors.

In partially observable domains, the GDA agent might consider multiple hypotheses. If there
are two or more possible explanations, each could be equally likely initially. But if relevant new
information is observed, the system should consider updating the explanations. A contribution of
this paper is handling multiple explanations in situations where more than one hypothesis may be
true. The goal monitors are created for all possible hypotheses, and when the agent observes new
information, one or more of the goal monitors may fire which in turn will lead to a possible change
in the goals the agent is pursuing.

5

Z. DANNENHAUER, M. MOLINEAUX, AND M. COX

In the Minecraft scenario mentioned earlier, after Steve observes his health is low, he picks
one of the assumptions about the world and acts based on it by formulating a goal/plan. He also
observes evidence related to other assumptions in case they end up being the cause of the problem.
Considering multiple possible hypotheses enables the agent to react to the situation and generate a
goal and plan to survive while observing other possible events/goals.

We now describe the execution monitoring framework for an agent equipped with explanation-
based goal monitors. First, we describe how the explanation module generates the necessary infor-
mation for goal monitors. Next, we describe how the monitors use this information to decide if the
current goal is still valid in a dynamic world, and which goal the agent should pursue when there
are multiple possible goals. Finally, we describe how the framework will respond to changes in the
conditions that are being monitored.

4.1 Monitor Trigger Conditions

At each cycle of MIDCA, the execution history 〈obs0, a1, ..., ak, obsk+1〉 is passed to DiscoverHis-
tory to detect discrepancies. When a new observation is inconsistent with the agent’s expectation
(¬p ∈ effect(ak) and p ∈ obsk+1), DiscoverHistory tries to resolve the inconsistency. Discover-
History deduces the possible worlds that result from different sets of assumptions.

Lets assume that there are n possible explanations, each has m assumed initial values h =
[p′1, ..., p

′
m] and one possible event ei, i ∈ [1..n]. Assumptions across all explanations are added to

MIDCA’s set of hypotheses hyps = [h1...hn].
In our scenario described in the introduction, the appearance of a skeleton leads to a skeleton

attack event e1 that includes effects that match the discrepancies in the observed state (effect(e1) |=
p, where p is low health). DiscoverHistory produces an explanation that includes the unobservable
facts that would cause the event to occur. MIDCA adopts these facts as a hypothesis.

For example, these are explanations in the earlier scenario:

Explanation 1:
(ASSUME-INITIAL-VALUE

(THING-AT SKELETON ADJ-M) T TIME 1)
(SKELETON-ATTACKED M1-1 ADJ-M 15 20

TIME 8)

Explanation 2:
(ASSUME-INITIAL-VALUE
(IS-TRAP ADJ-M) T TIME 1)

(FALL-IN-TRAP M1-1 ADJ-M 15 20 TIME 8)

These two hypothetical facts are competing alternatives. The first explanation states that there
is a skeleton in one of the adjacent tiles to the agent, and an event e = SKELETON-ATTACKED
occurred. Note that (THING-AT SKELETON ADJ-M) is an unobservable fact. The second ex-
planation states that there is a trap in one of the adjacent tiles to the agent. MIDCA adds these
assumed predicates to the set of hypotheses:

6

EXPLANATION-BASED GOAL MONITORS FOR AUTONOMOUS AGENTS

h1 = (THING-AT SKELETON ADJ-M)
h2 = (IS-TRAP ADJ-M)
An abstract goal ga is generated in the Interpret phase in MIDCA in response to a inconsistency.

After explaining the inconsistency, the agent formulates goals for each explanation (if any) and
adds these goals to the set of ga’s subgoals. Algorithm 1 shows how ga is decomposed into a set
of subgoals 〈g1, ..., gn〉 using the causal structure of each explanation. It takes as input the abstract
goal, ga and the set of hypotheses for a inconsistency, hyps. First, the set of hypotheses hyps are
sorted based on some metrics like their possibility, danger, etc (line 2). Then, for each hypothesis a
goal is formulated and is added to the set of ga’s subgoals (lines 4-5). Next, if Interpret decides to
have a goal monitored a goal monitor for each assumed predicate in a hypothesis is created (lines
6-8). The first subgoal is selected as the current goal (line 9).

g1 = ¬ (THING-AT SKELETON ADJ-M)
g2 = ¬ (IS-TRAP ADJ-M)
When a goal gi is generated in response to event ei, Interpret formulates an explanation-based

goal monitor GM for each predicate in the hypothesis h=[p′1, ..., p
′
m] . GM is a tuple (p′, ga, g)

that consists of the predicate p′ from a hypothesis related to event ei, the abstract goal ga, and the
formulated goal gi. The hypotheses provide the environmental conditions that must persist for the
goal gi to remain valid. Goal monitors observe these conditions and provide the response if they
change. If these conditions change in the state, the goal monitor will fire, and the GDA process for
goal management will know to reconsider pursuing the current goal.

m1= 〈(THING-AT SKELETON ADJ-M), ga, g1〉
m2= 〈(IS-TRAP ADJ-M), ga, g2〉

Algorithm 1 Elaborate the abstract goal and create explanation-based goal monitors.
Input: Abstract goal ga, set of hypotheses hyps.

1: procedure ELABORATE-GOAL(ga, hyps)
2: sort hyps based on possibility
3: for h in hyps do
4: gi ← formulate goal
5: ga.subgoals← ga.subgoals ∪ gi
6: if gi.is-monitored then
7: for p′ in h do
8: mnts← mnts ∪ (p′, ga, gi)

9: gc ← ga.subgoals[1]

4.2 Monitor Response

Algorithm 2 shows the firing condition for the explanation-based goal monitors. It takes as input
the abstract goal, ga and the set of goal monitors mnts. Goal monitors tie the predicates from
hypotheses to goals, and then when a monitor fires the agent considers switching the goal. The first
step in monitoring is to check if the hypothesized predicates are in the new observed state.

7

Z. DANNENHAUER, M. MOLINEAUX, AND M. COX

If a monitored predicate p′ is observed, MIDCA adds that to the set of beliefs, sb. If p′ is an
effect of event e and goal g, then the current goal should change to g since e is what really happened
in the world (lines 3-4).

If a monitored predicate p′ is believed to be false (¬p ∈ sb) then the corresponding goal should
be abandoned (if it is current goal) and removed from the set of subgoals. Then, the algorithm
changes the current goal to be another possible subgoal of ga (lines 5-8). If there are not more
subgoals in ga, it will abandon ga.

Algorithm 2 Check for fired Goal monitors.
Input: Abstract goal ga, set of monitors mnts.

1: procedure FIRE-MONITOR(ga, mnts)
2: for (p′, ga, g) in mnts do
3: if if p′ ∈ sb then
4: gc ← g

5: if ¬p′ ∈ sb then
6: ga.subgoals← ga.subgoals− g
7: if gc = g then
8: gc ← ga.subgoals[1]

5. Empirical Evaluation

We claim that in partially observable domains with unexpected events an agent with goal monitors
will outperform an agent without goal monitors. To evaluate this hypothesis, we conducted tests
with MIDCA on a partially observable Minecraft-based domain. The MIDCA agents operate in
planning domains using a PDDL domain definition [Fox and Long, 2003] representing actions,
events, and predicates. For planning, we use the MetricFF planner [Hoffmann, 2003].

In the Minecraft domain, various unobservable events occur that our agent does not have suffi-
cient knowledge to predict. To evaluate the impact of goal monitors, we compare our agent GMA-
gent equipped with explanation-based goal monitors against two baselines: a GDA agent with ex-
planation capabilities but no Goal monitors which we call EXAgent, and an off-line planning agent
named PLAgent. In this scenario, GMAgent should outperform PLAgent due to the environments’
partial observability. EXAgent generates explanations when an anomaly happens and formulates
goals in response to the anomalies, but it does not monitor the current goal or the set of pending
goals. We hypothesize that GMAgent will outperform EXAgent in scenarios where unobserved
facts affect the state and there are multiple hypotheses, due to goal monitoring, and it will outper-
form PLAgent where events occur outside of the agent’s mission due to goal reasoning. We measure
performance as progress towards achieving the initial goal, which we describe next.

8

EXPLANATION-BASED GOAL MONITORS FOR AUTONOMOUS AGENTS

5.1 The Minecraft Domain

In the Minecraft game1, the character "Steve" explores an infinite 3D virtual world while gathering
resources and surviving dangers. Minecraft has become a popular evaluation domain for artificial
intelligence research, because it has some properties of real-world domains: partially observable,
3-dimensional, infinite state space, and real-time execution [Branavan et al., 2012]. There are dif-
ferent factors that can damage Steve’s health like falling in lava, getting shot by a skeleton archer,
triggering an arrow trap, and low hunger level. In this evaluation, we only consider two possible
events: getting shot by a skeleton archer or triggering an arrow trap. Both decrease the agent’s
health by two.

The agent is tasked with the initial goal to obtain seven pieces of wood. Wood is obtained by
harvesting trees (via a chopping action which requires an axe). The location of trees is known by
the agent beforehand.

We now walk through a scenario in which Steve should switch to a pending goal. While Steve
is en route to a known tree’s location, he observes his health has suddenly become low and his life
is in danger. Steve’s health begins at a value of thirty. When Steve’s health value reaches zero,
the agent dies and no more goals can be accomplished. Performance is calculated based on how
many trees the agent can harvest. We gave the agent three lives; whenever the agent dies, it loses all
his items and it starts form the beginning tile. However, the agent retains credit for trees harvested
before death.

The PDDL planning model for this experiment consists of fifteen actions, and two events. We
randomly generated fifty problems for each difficulty level. Difficulty levels differ only in the
number of random traps placed. More skeletons also make the scenario more difficult in sense
there is more danger, but since two agents EXAgent and GMAgent behave the same, we only make
the scenario more difficult by varying the number of traps. In each problem, there are seven trees,
and five skeletons. Each problem takes place in a 10 × 10 grid. The number of traps (or difficulty
level) was varied from zero to six. In this experiment, if the agent goes to an adjacent tile with a
skeleton or trap, he gets shot by an arrow. If there is a skeleton, the agent needs to shoot the archer
skeleton using a bow. If the agent triggers a trap, then he needs to disarm the trap with an axe. Note
that skeletons and traps are unobservable and the agent can see them only after performing sensing
actions and facing the direction of the skeleton/trap.

5.2 Results

In each difficulty level, we performed 50 trials which were held constant across the three agents.
Figure 2 shows the average performance of GMAgent, EXAgent and PLAgent. When there is no
trap, GMAgent and EXAgent have almost the same performance, because they selected the right
explanation (skeleton-attacked) in the beginning and generate a goal to deal with the external event.

When there are more traps, the GMAgent has a better overall performance score than the EX-
Agent. In the middle of plan execution a monitor fires if the GMAgent did not find a skeleton or
if it receives a new observation that proves there is an arrow trap nearby. The agent responds by

1. http://www.minecraft.net/

9

Z. DANNENHAUER, M. MOLINEAUX, AND M. COX

Figure 2. The performance of the GMAgent, EXAgent and PLAgent in the Minecraft domain. Difficulty is
based on the number of traps (i=0,2,4,6). The chart shows the average of 50 runs at each difficulty level.

changing the goal to destroy the trap instead of the skeleton. In contrast, the EXAgent persists in
pursuit of the goal (kill skeleton), but it dies before it gets to the real problem.

At difficulty level six, the performance of PLAgent is slightly better than EXAgent, because the
EXAgent wastes time pursuing the wrong goal, which causes damage. The PLAgent ignores the
skeleton and trap and pursues the original goal. This comparison shows that the GMAgent makes
better progress towards achieving its goals compared to the EXAgent and PLAgent which supports
our claim that using goal monitors improves the agent’s performance.

6. Related Work

Much of the prior work in AI regarding interleaving planning and interpretation has been carried
out in the form of cognitive architectures. Work on monitoring has mainly been done in individual
systems (e.g., HOTRIDE [Ayan et al., 2007]). The novelty of our work is the ability to generate goal
monitors for goals which were formulated in response to hypotheses (explanations) about anoma-
lous and surprising events. The effect of goal monitors leads agents to be able to better select among
current and pending goals as new information is discovered, including observing new facts and/or
verifying facts to not be true (i.e. as is the case when the agent realizes there is no skeleton nearby).

One important aspect of this work is related to cognitive architectures. Systems like ICARUS,
PUG, SOAR and MIDCA are inspired from human cognition and are designed to accomplish mul-
tiple tasks [Langley and Choi, 2006; Laird, 2012; Laird et al., 2012]. The ICARUS architecture
[Langley and Choi, 2006] includes modules for conceptual inference, goal selection, skill execution,
means-ends problem solving, and skill learning. The Inference module is a bottom-up processing
of perceptual input with rules that fire in certain circumstances.

10

EXPLANATION-BASED GOAL MONITORS FOR AUTONOMOUS AGENTS

The PUG extension to the ICARUS cognitive architecture [Langley et al., 2017] is the closest
work to our MIDCA architecture in spirit. PUG integrates action execution, planning, and plan
monitoring. The monitors check for the preconditions and effects of actions during execution, and
if they find any anomaly (e.g. the preconditions of any action are not satisfied) it leads to replanning.
They also monitor the preconditions of the rules that generate goals in PUG, and if the conditions
change, the goal will be abandoned. Our work is related to their approach in that we address the
problem of plan execution and goal monitoring. However, the nature of goal monitors presented in
this paper is different since it is concerned with goals generated from dynamic explanatory structures
rather than static rules. Additionally in our work, the response to changes is not only a choice
between goal abandonment or replanning; our agent may change the goal itself in addition to simply
dropping it.

Goal-driven autonomy [Munoz-Avila et al., 2010; Aha et al., 2010] is a kind of goal reasoning
that focuses on explanation of discrepancies in order to formulate new goals. GDA agents generate
goals as the agent encounters differences between the agentâĂŹs expectations for the outcome of its
actions and the actual observed outcomes in each new state [Dannenhauer and Munoz-Avila, 2015].
When such a inconsistency occurs, GDA agents generate a causal explanation for the inconsistency,
and generate a new goal based on the causal structure. ARTUE [Klenk et al., 2013] is a domain
independent autonomous agent with the capacity to dynamically determine which goals to pursue in
unexpected situations. In these systems that agents do not consider explanations for pending goals
or monitoring for pending goals, which is the focus of this paper.

Our work is related to the problem of execution monitoring. The problem of detecting failures
during execution, diagnosing the reasons for these failures, and recovering from them [De Gia-
como et al., 1998; Ambros-Ingerson and Steel, 1988]. Expectation-based monitors detect failures
in execution by comparing expectations generated by the planner to observations received during
execution. Pablo Mendoza et al. (2015) focus on monitoring stochastic expectations and finding
subtle anomalies from collections of observations, and adapting the model to improve performance
based on experience. Another system like CASPER [Au et al., 2004] refines the plan under con-
struction when the external information changes during planning time. Neither of these systems
perform monitoring on explicit goal structures.

7. Conclusion

An autonomous agent not only needs to generate plans to achieve different goals but also detect
problems, formulate new goals, monitor the plans and goals, change the goal and replan when
its beliefs change in order to operate in complex environments. In this paper, we described an
execution monitoring framework for an agent equipped with explanation-based goal monitors. Our
system supports monitoring during execution, and it detects unexpected changes in the agentâĂŹs
goals.

Our system finds the discrepancies between its expectations and its observations during exe-
cution. It then explains these discrepancies using an environment model. It then formulates goals
and monitors the justification for goal selection and abandons/changes the goal when justifications
are not valid in the environment. In addition, we reported our system’s operation on scenarios that

11

Z. DANNENHAUER, M. MOLINEAUX, AND M. COX

demonstrated its ability to handle the situation when there are multiple hypotheses about the world
and switch goals when its beliefs change.

Future work should investigate reasoning over pieces of evidence to calculate the probability
for each hypothesis; when new information is received the system should reason about it before
deciding about dropping or changing its current goal. By providing a probability for each piece of
evidence, we can use Bayesian probability to calculate the probability of each event and let the goal
monitor decide if the goal change is needed when it observes new pieces of evidence.

8. Acknowledgments

This material is partially based upon work supported by AFOSR grant FA2386-17-1-4063, by ONR
grant N00014-18-1-2009, and by DARPA contract number N6600118C4039.

12

EXPLANATION-BASED GOAL MONITORS FOR AUTONOMOUS AGENTS

References

DW Aha, M Klenk, H Munoz-Avila, A Ram, and D Shapiro. Goal-driven autonomy: Notes from
the “aaai” workshop, 2010.

Jose A Ambros-Ingerson and Sam Steel. Integrating planning, execution and monitoring. In AAAI,
volume 88, pages 21–26, 1988.

T Au, Dana Nau, and VS Subrahmanian. Utilizing volatile external information during planning.
In ECAI, volume 16, page 647. Citeseer, 2004.

N Fazil Ayan, Ugur Kuter, Fusun Yaman, and Robert P Goldman. Hotride: Hierarchical ordered task
replanning in dynamic environments. In Planning and Plan Execution for Real-World Systems–
Principles and Practices for Planning in Execution: Papers from the ICAPS Workshop. Provi-
dence, RI, volume 38, 2007.

Ralph Bergmann. Experience management: foundations, development methodology, and internet-
based applications. Springer-Verlag, 2002.

SRK Branavan, Nate Kushman, Tao Lei, and Regina Barzilay. Learning high-level planning from
text. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics:
Long Papers-Volume 1, pages 126–135. Association for Computational Linguistics, 2012.

Michael T Cox and Zohreh A Dannenhauer. Perceptual goal monitors for cognitive agents in chang-
ing environments. Advances in Cognitive Systems (ACS-17), 2017.

Michael T Cox, Zohreh Alavi, Dustin Dannenhauer, Vahid Eyorokon, and Hector Munoz-Avila.
MIDCA: A metacognitive, integrated dual-cycle architecture for self-regulated autonomy. In
AAAI, 2016.

Michael T Cox, Dustin Dannenhauer, and Sravya Kontrakunta. Goal operations for cognitive sys-
tems. In AAAI, 2017.

Michael T Cox. Perpetual self-aware cognitive agents. AI magazine, 28(1):32, 2007.

Dustin Dannenhauer and Hector Munoz-Avila. Raising expectations in gda agents acting in dynamic
environments. In International Joint Conference on Artificial Intelligence (IJCAI-15), 2015.

Giuseppe De Giacomo, Raymond Reiter, and Mikhail Soutchanski. Execution monitoring of
high-level robot programs. In PRINCIPLES OF KNOWLEDGE REPRESENTATION AND
REASONING-INTERNATIONAL CONFERENCE-, pages 453–465. MORGAN KAUFMANN
PUBLISHERS, 1998.

Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal planning
domains. Journal of artificial intelligence research, 20:61–124, 2003.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning: theory & practice. Elsevier,
2004.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated planning and acting. Cambridge Uni-
versity Press, 2016.

Jörg Hoffmann. The Metric-FF planning system: Translating “ignoring delete lists” to numeric state
variables. 20:291–341, 2003.

13

Z. DANNENHAUER, M. MOLINEAUX, AND M. COX

Matthew Klenk, Matt Molineaux, and David W Aha. Goal-driven autonomy for responding to
unexpected events in strategy simulations. Computational Intelligence, 29(2):187–206, 2013.

John E Laird, Keegan R Kinkade, Shiwali Mohan, and Joseph Z Xu. Cognitive robotics using
the soar cognitive architecture. Cognitive Robotics AAAI Technical Report WS-12-06. Accessed,
pages 46–54, 2012.

John E Laird. The Soar cognitive architecture. MIT Press, 2012.

Pat Langley and Dongkyu Choi. A unified cognitive architecture for physical agents. In Proceedings
of the National Conference on Artificial Intelligence, volume 21, page 1469. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.

Pat Langley, Dongkyu Choi, Mike Barley, Ben Meadows, and Edward P Katz. Generating, execut-
ing, and monitoring plans with goal-based utilities in continuous domains. In Proceedings of the
Fifth Annual Conference on Advances in Cognitive Systems, 2017.

Matthew Molineaux, Ugur Kuter, and Matthew Klenk. Discoverhistory: Understanding the past in
planning and execution. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems-Volume 2, pages 989–996. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2012.

Héctor Munoz-Avila, David W Aha, Ulit Jaidee, Matthew Klenk, and Matthew Molineaux. Apply-
ing goal driven autonomy to a team shooter game. In FLAIRS Conference, 2010.

Juan Pablo Mendoza, Manuela Veloso, and Reid Simmons. Plan execution monitoring through
detection of unmet expectations about action outcomes. 2015:3247–3252, 06 2015.

Matt Paisner, Michael Maynord, Michael T Cox, and Don Perlis. Goal-driven autonomy in dynamic
environments. In Goal Reasoning: Papers from the ACS Workshop, page 79. Citeseer, 2013.

14

